Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Genetics and Genomics

Transcriptome-Wide Identification Of The Rna-Binding Landscape Of The Chromatin-Associated Protein Parp1 Reveals Functions In Rna Biogenesis, Manana Melikishvili, Julia H. Chariker, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf Nov 2017

Transcriptome-Wide Identification Of The Rna-Binding Landscape Of The Chromatin-Associated Protein Parp1 Reveals Functions In Rna Biogenesis, Manana Melikishvili, Julia H. Chariker, Eric C. Rouchka, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Recent studies implicate Poly (ADP-ribose) polymerase 1 (PARP1) in alternative splicing regulation, and PARP1 may be an RNA-binding protein. However, detailed knowledge of RNA targets and the RNA-binding region for PARP1 are unknown. Here we report the first global study of PARP1–RNA interactions using PAR–CLIP in HeLa cells. We identified a largely overlapping set of 22 142 PARP1–RNA-binding peaks mapping to mRNAs, with 20 484 sites located in intronic regions. PARP1 preferentially bound RNA containing GC-rich sequences. Using a Bayesian model, we determined positional effects of PARP1 on regulated exon-skipping events: PARP1 binding upstream and downstream of the skipped exons …


Clinical And Experimental Studies Of A Novel P525r Fus Mutation In Amyotrophic Lateral Sclerosis, Lisha Kuang, Marisa Kamelgarn, Alexandra Arenas, Jozsef Gal, Deborah Taylor, Weiming Gong, Martin Brown, Daret St. Clair, Edward J. Kasarskis, Haining Zhu Aug 2017

Clinical And Experimental Studies Of A Novel P525r Fus Mutation In Amyotrophic Lateral Sclerosis, Lisha Kuang, Marisa Kamelgarn, Alexandra Arenas, Jozsef Gal, Deborah Taylor, Weiming Gong, Martin Brown, Daret St. Clair, Edward J. Kasarskis, Haining Zhu

Molecular and Cellular Biochemistry Faculty Publications

Objective: To describe the clinical features of a novel fused in sarcoma (FUS) mutation in a young adult female amyotrophic lateral sclerosis (ALS) patient with rapid progression of weakness and to experimentally validate the consequences of the P525R mutation in cellular neuronal models.

Methods: We conducted sequencing of genomic DNA from the index patient and her family members. Immunocytochemistry was performed in various cellular models to determine whether the newly identified P525R mutant FUS protein accumulated in cytoplasmic inclusions. Clinical features of the index patient were compared with 19 other patients with ALS carrying the P525L mutation in the same …


Microarray Dataset Of Transient And Permanent Dna Methylation Changes In Hela Cells Undergoing Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf May 2017

Microarray Dataset Of Transient And Permanent Dna Methylation Changes In Hela Cells Undergoing Inorganic Arsenic-Mediated Epithelial-To-Mesenchymal Transition, Meredith Eckstein, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

The novel dataset presented here represents the results of the changing pattern of DNA methylation profiles in HeLa cells exposed to chronic low dose (0.5 µM) sodium arsenite, resulting in epithelial-to-mesenchymal transition, as well as DNA methylation patterns in cells where inorganic arsenic has been removed. Inorganic arsenic is a known carcinogen, though not mutagenic. Several mechanisms have been proposed as to how inorganic arsenic drives carcinogenesis such as regulation of the cell׳s redox potential and/or epigenetics. In fact, there are gene specific studies and limited genome-wide studies that have implicated epigenetic factors such as DNA methylation in inorganic arsenic-mediated …


Epigenomic Reprogramming In Inorganic Arsenic-Mediated Gene Expression Patterns During Carcinogenesis, Meredith Eckstein, Rebekah Eleazer, Matthew Rea, Yvonne N. Fondufe-Mittendorf Mar 2017

Epigenomic Reprogramming In Inorganic Arsenic-Mediated Gene Expression Patterns During Carcinogenesis, Meredith Eckstein, Rebekah Eleazer, Matthew Rea, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports …


Genome-Wide Dna Methylation Reprogramming In Response To Inorganic Arsenic Links Inhibition Of Ctcf Binding, Dnmt Expression And Cellular Transformation, Matthew Rea, Meredith Eckstein, Rebekah Eleazer, Caroline Smith, Yvonne N. Fondufe-Mittendorf Feb 2017

Genome-Wide Dna Methylation Reprogramming In Response To Inorganic Arsenic Links Inhibition Of Ctcf Binding, Dnmt Expression And Cellular Transformation, Matthew Rea, Meredith Eckstein, Rebekah Eleazer, Caroline Smith, Yvonne N. Fondufe-Mittendorf

Molecular and Cellular Biochemistry Faculty Publications

Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. …