Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Genetics and Genomics

De-Coding The Impact Of Evolved Changes In Gene Expression And Cellular Phenotype On Primate Evolution, Trisha Zintel Feb 2020

De-Coding The Impact Of Evolved Changes In Gene Expression And Cellular Phenotype On Primate Evolution, Trisha Zintel

Doctoral Dissertations

The goal of the dissertation work outlined here was to investigate the influence of proximal processes contributing to evolutionary differences in phenotypes among primate species. There are numerous previous comparative analyses of gene expression between primate brain regions. However, primate brain tissue samples are relatively rare, and my results have contributed to the pre-existing data on more well-studied primates (i.e. humans, chimpanzees, macaques, marmosets) as well as produced information on more rarely-studied primates (i.e. patas monkey, siamang, spider monkey). Additionally, the primary visual cortex has not previously been as extensively studied at the level of gene expression as other brain …


Interspecific Gene Flow Potentiates Adaptive Evolution In A Hybrid Zone Formed Between Pinus Strobiformis And Pinus Flexilis, Mitra Menon Jan 2020

Interspecific Gene Flow Potentiates Adaptive Evolution In A Hybrid Zone Formed Between Pinus Strobiformis And Pinus Flexilis, Mitra Menon

Theses and Dissertations

Species range margins are often characterised by high degrees of habitat fragmentation resulting in low genetic diversity and higher gene flow from populations at the core of the species range. Interspecific gene flow from a closely related species with abutting range margins can increase standing genetic diversity and generate novel allelic combinations thereby alleviating limits to adaptive evolution in range margin populations. Hybridization driven interspecific gene flow has played a key role in the demographic history of several conifer due to their life history characteristics such as weak crossability barriers and long generation times. Nevertheless, demonstrating whether introgression is adaptive …


Plasticity And The Impact Of Increasing Temperature On A Tropical Ectotherm, Adam A. Rosso Jan 2020

Plasticity And The Impact Of Increasing Temperature On A Tropical Ectotherm, Adam A. Rosso

Electronic Theses and Dissertations

Organisms may respond to climate change through behavior, genetic adaptation, and/or phenotypic plasticity. Tropical ectotherms are thought to be especially vulnerable to climate change because most have a narrow range of thermal tolerance while living close to their upper thermal tolerance limits. Additionally, many tropical species live in closed-canopy forests, which provide homogenous thermal landscapes that prevent behavioral compensation for stressfully warm temperatures. Finally, tropical ectotherms are thought to have decreased capacity for phenotypic plasticity because they have evolved in thermally stable environments. We tested gene expression patterns and phenotypic plasticity in the Panamanian slender anole by a) measuring changes …


Molecular Response Of Spartina Alterniflora To The Deepwater Horizon Oil Spill, Mariano Alvarez Jul 2016

Molecular Response Of Spartina Alterniflora To The Deepwater Horizon Oil Spill, Mariano Alvarez

USF Tampa Graduate Theses and Dissertations

Although the “genome as a blueprint” metaphor has been pervasive in biology, recent advances in molecular biology have revealed a complex network of regulatory machinery that dynamically regulated molecular processes in response to environmental conditions. However, these patterns, as well as the evolutionary processes that underlie them, remain understudied in natural conditions. In 2010, the Deepwater Horizon oil spill released an estimated 4.9 million barrels of oil into the Gulf of Mexico, making landfall on salt marsh habitat dominated by the foundation species Spartina alterniflora. Despite the severe impacts to phenotype and fitness, S. alterniflora proved remarkably resilient in …


Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi Jan 2014

Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi

Biological Sciences Faculty Publications

Dinoflagellates of the genus Symbiodinium form an endosymbiosis with reef building corals, in which photosynthetically derived nutrients comprise the majority of the coral energy budget. An extraordinary amount of functional and genetic diversity is contained within the coral-associated Symbiodinium, with some phylotypes (i.e., genotypic groupings), conferring enhanced stress tolerance to host corals. Recent advances in DNA sequencing technologies have enabled transcriptome-wide profiling of the stress response of the cnidarian coral host; however, a comprehensive understanding of the molecular response to stress of coral-associated Symbiodinium, as well as differences among physiologically susceptible and tolerant types, remains largely unexplored. Here, …


Axolotl Paedomorphosis: A Comparison Of Juvenile, Metamorphic, And Paedomorphic Ambystoma Mexicanum Brain Gene Transcription, Carlena Johnson Jan 2013

Axolotl Paedomorphosis: A Comparison Of Juvenile, Metamorphic, And Paedomorphic Ambystoma Mexicanum Brain Gene Transcription, Carlena Johnson

Theses and Dissertations--Biology

Unlike many amphibians, the paedomorphic axolotl (Ambystoma mexicanum) rarely undergoes external morphological changes indicative of metamorphosis. However, internally, some axolotl tissues undergo cryptic metamorphic changes. A previous study examined interspecific patterns of larval brain gene expression and found that these species exhibited unique temporal expression patterns that were hypothesized to be morph specific. This thesis tested this hypothesis by examining differences in brain gene expression between juvenile (JUV), paedomorphic (PAED), and metamorphic (MET) axolotls. I identified 828 genes that were expressed differently between JUV, PAED, and MET. Expression estimates from JUV were compared to estimates from PAED and …