Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez Nov 2015

Age-Associated Methylation Suppresses Spry1, Leading To A Failure Of Re-Quiescence And Loss Of The Reserve Stem Cell Pool In Elderly Muscle., Anne Bigot, William J Duddy, Zamalou G Ouandaogo, Elisa Negroni, Virginie Mariot, Svetlana Ghimbovschi, Brennan Harmon, Aurore Wielgosik, Camille Loiseau, Joseph Devaney, Julie Dumonceaux, Gillian Butler-Browne, Vincent Mouly, Stéphanie Duguez

Genomics and Precision Medicine Faculty Publications

The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated …


Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor Aug 2015

Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor

Janet M. Stavnezer

Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is …