Open Access. Powered by Scholars. Published by Universities.®

Forest Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Masters Theses

Quercus

Articles 1 - 2 of 2

Full-Text Articles in Forest Sciences

Effects Of Prescribed Fire On Planted Oak Growth And Survival In Restored Savannas, Allison Earl Jan 2023

Effects Of Prescribed Fire On Planted Oak Growth And Survival In Restored Savannas, Allison Earl

Masters Theses

Most oak savannas in the Midwestern United States have been lost to agriculture and habitat degradation. Because of their rarity and ability to support high plant and animal diversity, savannas are often a target for restoration. Oak savanna restoration frequently relies on direct planting of oak seedlings to establish the necessary tree canopy. Returning fire to the system is critical to the herbaceous component of the savanna, but managers risk damaging or killing trees if burning is introduced too soon. I studied growth and physiological responses of three oak species (Quercus alba, Q. macrocarpa, and Q. velutina …


Effects Of Different Silvicultural Practices On Wild Turkey Brood Habitat And Regeneration In Upland Hardwoods, John Michael Mccord Aug 2011

Effects Of Different Silvicultural Practices On Wild Turkey Brood Habitat And Regeneration In Upland Hardwoods, John Michael Mccord

Masters Theses

Optimum brood cover for wild turkeys is composed of herbaceous cover <0.5 m tall that conceals poults from predators and allows travel underneath. On tracts of hardwoods where early succession stages and young forest cover are scarce, a lack of understory development can limit turkey populations. Additionally, retaining oak on these sites after logging or habitat enhancement is important to provide future timber value and hard mast. I compared the effects of silvicultural practices (multiple fires [F], shelterwood cutting [S], shelterwood cutting with one fire [SF], retention cutting [R], retention cutting with multiple fires [RF], retention cutting with herbicide application [RH], and retention cutting with herbicide application and multiple fires [RHF]) with controls (C) on wild turkey brood habitat and oak regeneration in upland central hardwood stands. I measured structure and food resources to quantify the quality of wild turkey brood cover. Shelterwood and retention cuts increased photosynthetically active radiation. However, herbaceous, vine, and bramble groundcover did not increase. Woody regeneration was greater following canopy reduction and understory disturbance compared to C. Disturbance (fire or herbicide) was required to maintain vegetation at the ideal height for wild turkey broods. Soft mast production increased after canopy reduction with and without fire. Invertebrate biomass did not increase following any treatment, but availability exceeded the dietary requirements of a wild turkey brood. I also counted stem density of oak and competitor regeneration in response to these treatments. Seedlings <12.7 cm were ephemeral. S and SF had a greater density of oak stems >1.4 m than C and F. However, S and SF also had the greatest density of oak >1.4 m prior to treatment. Canopy reduction increased oak competitors, but prescribed fire reduced competitors. I recommend canopy reduction, followed by repeated low-intensity prescribed fire to maintain low groundcover to enhance brood habitat for wild turkeys in mature closed-canopy upland hardwood stands.