Open Access. Powered by Scholars. Published by Universities.®

Forest Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Forest Sciences

Recovery From Disturbance Requires Resynchronization Of Ecosystem Nutrient Cycles, Edward B. Rastetter, Ruth D. Yanai, R Quinn Thomas, Matthew A. Vadeboncoeur, Timothy J. Fahey, Melany C. Fisk, Bonnie L. Kwiatkowski, Steven P. Hamburg Apr 2013

Recovery From Disturbance Requires Resynchronization Of Ecosystem Nutrient Cycles, Edward B. Rastetter, Ruth D. Yanai, R Quinn Thomas, Matthew A. Vadeboncoeur, Timothy J. Fahey, Melany C. Fisk, Bonnie L. Kwiatkowski, Steven P. Hamburg

Earth Systems Research Center

Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following …


Climate Change At The Ecosystem Scale: A 50-Year Record In New Hampshire, Steven P. Hamburg, Matthew A. Vadeboncoeur, Andrew D. Richardson, Amey S. Bailey Feb 2013

Climate Change At The Ecosystem Scale: A 50-Year Record In New Hampshire, Steven P. Hamburg, Matthew A. Vadeboncoeur, Andrew D. Richardson, Amey S. Bailey

Earth Systems Research Center

Observing the full range of climate change impacts at the local scale is difficult. Predicted rates of change are often small relative to interannual variability, and few locations have sufficiently comprehensive long-term records of environmental variables to enable researchers to observe the fine-scale patterns that may be important to understanding the influence of climate change on biological systems at the taxon, community, and ecosystem levels. We examined a 50-year meteorological and hydrological record from the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, an intensively monitored Long-Term Ecological Research site. Of the examined climate metrics, trends in temperature were the …