Open Access. Powered by Scholars. Published by Universities.®

Forest Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Forest Sciences

Overexpression Of Constans Homologs Co1 And Co2 Fails To Alter Normal Reproductive Onset And Fall Bud Set In Woody Perennial Poplar., Chuan-Yu Hsu, Joshua P. Adams, Kyoungok No, Haiying Liang, Richard Meilan, Olga Pechanova, Abdelali Barakat, John E. Carlson, Grier P. Page, Cetin Yuceer Sep 2012

Overexpression Of Constans Homologs Co1 And Co2 Fails To Alter Normal Reproductive Onset And Fall Bud Set In Woody Perennial Poplar., Chuan-Yu Hsu, Joshua P. Adams, Kyoungok No, Haiying Liang, Richard Meilan, Olga Pechanova, Abdelali Barakat, John E. Carlson, Grier P. Page, Cetin Yuceer

College of Forest Resources Publications and Scholarship

CONSTANS (CO) is an important flowering-time gene in the photoperiodic flowering pathway of annual Arabidopsis thaliana in which overexpression of CO induces early flowering, whereas mutations in CO cause delayed flowering. The closest homologs of CO in woody perennial poplar (Populus spp.) are CO1 and CO2. A previous report showed that the CO2/FLOWERING LOCUS T1 (FT1) regulon controls the onset of reproduction in poplar, similar to what is seen with the CO/FLOWERING LOCUS T (FT) regulon in Arabidopsis. The CO2/FT1 regulon was also reported to control fall bud set. Our long-term field observations show that overexpression of CO1 and CO2 …


Evolution Of Genome Size And Complexity In Pinus., Alison M. Morse, Daniel G. Peterson, M. Nurul Islam-Faridi, Katherine E. Smith, Zenaida V. Magbanua, Saul A. Garcia, Thomas L. Kubisiak, Henry V. Amerson, John E. Carlson, C. Dana Nelson, John M. Davis Feb 2009

Evolution Of Genome Size And Complexity In Pinus., Alison M. Morse, Daniel G. Peterson, M. Nurul Islam-Faridi, Katherine E. Smith, Zenaida V. Magbanua, Saul A. Garcia, Thomas L. Kubisiak, Henry V. Amerson, John E. Carlson, C. Dana Nelson, John M. Davis

College of Agriculture & Life Sciences Publications and Scholarship

BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible …