Open Access. Powered by Scholars. Published by Universities.®

Forest Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Forest Sciences

Monitoring Fine-Scale Forest Health Using Unmanned Aerial Systems (Uas) Multispectral Models, Benjamin T. Fraser, Russell G. Congalton Nov 2021

Monitoring Fine-Scale Forest Health Using Unmanned Aerial Systems (Uas) Multispectral Models, Benjamin T. Fraser, Russell G. Congalton

Faculty Publications

Forest disturbances—driven by pests, pathogens, and discrete events—have led to billions of dollars in lost ecosystem services and management costs. To understand the patterns and severity of these stressors across complex landscapes, there must be an increase in reliable data at scales compatible with management actions. Unmanned aerial systems (UAS or UAV) offer a capable platform for collecting local scale (e.g., individual tree) forestry data. In this study, we evaluate the capability of UAS multispectral imagery and freely available National Agricultural Imagery Program (NAIP) imagery for differentiating coniferous healthy, coniferous stressed, deciduous healthy, deciduous stressed, and degraded individual trees throughout …


Carbon Fluxes And Interannual Drivers In A Temperate Forest Ecosystem Assessed Through Comparison Of Top-Down And Bottom-Up Approaches, Andrew P. Ouimette, Scott V. Ollinger, Andrew D. Richardson, David Y. Hollinger, Trevor F. Keenan, Lucie C. Lepine, Matthew A. Vadeboncoeur Jan 2018

Carbon Fluxes And Interannual Drivers In A Temperate Forest Ecosystem Assessed Through Comparison Of Top-Down And Bottom-Up Approaches, Andrew P. Ouimette, Scott V. Ollinger, Andrew D. Richardson, David Y. Hollinger, Trevor F. Keenan, Lucie C. Lepine, Matthew A. Vadeboncoeur

Earth Systems Research Center

Despite decades of research, gaining a comprehensive understanding of carbon (C) cycling in forests remains a considerable challenge. Uncertainties stem from persistent methodological limitations and the difficulty of resolving top-down estimates of ecosystem C exchange with bottom-up measurements of individual pools and fluxes. To address this, we derived estimates and associated uncertainties of ecosystem C fluxes for a 100-125 year old mixed temperate forest stand at the Bartlett Experimental Forest, New Hampshire, USA, using three different approaches: (1) tower-based eddy covariance, (2) a biometric approach involving C flux measurements of individual ecosystem subcomponents, and (3) an inventory approach involving changes …


Quantifying Carbon Allocation To Mycorrhizal Fungi By Temperate Forest Tree Species Across A Nitrogen Availability Gradient, Shersingh Joseph Tumber-Davila Jan 2013

Quantifying Carbon Allocation To Mycorrhizal Fungi By Temperate Forest Tree Species Across A Nitrogen Availability Gradient, Shersingh Joseph Tumber-Davila

Honors Theses and Capstones

Terrestrial ecosystems make up the largest carbon pool with a major portion of that being forests. With carbon being a major concern due to global climate change, being able to make accurate models is increasingly important. Studies have shown that trees may allocate up to 50% of their photosynthetically fixed carbon underground; however these values haven’t been accurately quantified and underground carbon allocation has been historically overlooked. Mycorrhizal fungi may be a large portion of underground carbon allocation, as they have a symbiotic relationship with trees where they provide the plant with water and nutrients in return for sugars (carbon). …


Meta-Analysis Of Fertilization Experiments Indicates Multiple Limiting Nutrients In Northeastern Deciduous Forests, Matthew A. Vadeboncoeur Aug 2010

Meta-Analysis Of Fertilization Experiments Indicates Multiple Limiting Nutrients In Northeastern Deciduous Forests, Matthew A. Vadeboncoeur

Earth Systems Research Center

It is widely accepted that nitrogen limits primary production in temperate forests, although co-limitation by N and P has also been suggested, and on some soils Ca and base cations are in short supply. I conducted a meta-analysis to assess the strength of existing experimental evidence for limitation of primary production by N, P, and Ca in hardwood forests of the northeastern United States and southeastern Canada, using data from 35 fertilization experiments in deciduous forests on glaciated soils across the region.

There is strong evidence for N limitation (formal meta-analysis weighted mean response ratio = 1.51, p < 0.01; simple mean = 1.42, p < 0.001). Forest productivity also tends to increase with additions of P (simple mean = 1.15, p = 0.05) and Ca (simple mean = 1.36 p < 0.001). Across all treatments, 85% of response ratios were positive. Multiple-element additions had larger effects than single elements, but factorial experiments showed little evidence of synergistic effects between nutrient additions. Production responses correlated positively with the rate of N fertilization, but this effect was reduced at high rates of ambient N deposition.