Open Access. Powered by Scholars. Published by Universities.®

Forest Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Forest Sciences

Remote Sensing Monitoring Of Vegetation Dynamic Changes After Fire In The Greater Hinggan Mountain Area: The Algorithm And Application For Eliminating Phenological Impacts, Zhibin Huang, Chunxiang Cao, Wei Chen, Min Xu, Yongfeng Dang, Ramesh P. Singh, Barjeece Bashir, Bo Xie, Xiaojuan Lin Jan 2020

Remote Sensing Monitoring Of Vegetation Dynamic Changes After Fire In The Greater Hinggan Mountain Area: The Algorithm And Application For Eliminating Phenological Impacts, Zhibin Huang, Chunxiang Cao, Wei Chen, Min Xu, Yongfeng Dang, Ramesh P. Singh, Barjeece Bashir, Bo Xie, Xiaojuan Lin

Mathematics, Physics, and Computer Science Faculty Articles and Research

Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances and the monitoring of forest restoration are critical for forest management. Vegetation phenology information in remote sensing images may interfere with the monitoring of vegetation restoration, but little research has been done on this issue. Remote sensing and the geographic information system (GIS) have emerged as important tools in providing valuable information about vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively consistent …


Using Multi-Indices Approach To Quantify Mangrove Changes Over The Western Arabian Gulf Along Saudi Arabia Coast, Wenzhao Li, Hesham El-Askary, Mohamed A. Qurban, Jingjing Li, K. P. Manikandan, Thomas Piechota Mar 2019

Using Multi-Indices Approach To Quantify Mangrove Changes Over The Western Arabian Gulf Along Saudi Arabia Coast, Wenzhao Li, Hesham El-Askary, Mohamed A. Qurban, Jingjing Li, K. P. Manikandan, Thomas Piechota

Mathematics, Physics, and Computer Science Faculty Articles and Research

Mangroves habitat present an important resource for large coastal communities benefiting from activities such as fisheries, forest products and clean water as well as protection against coastal erosion and climate related extreme events. Yet they are increasingly threatened by natural pressure and anthropogenic activities. We observed an inaccurate distribution of mangroves over the Western Arabian Gulf (WAG) which is a vital habitat and resource for the local ecosystem, according to the United Stated Geological Survey (USGS) mangrove database through spectral analysis. Change detection analysis is conducted on mangrove forests along the Saudi Arabian coast of the WAG for the years …


What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi Oct 2017

What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, …