Open Access. Powered by Scholars. Published by Universities.®

Food Science Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Applied sciences

Biological Engineering

Articles 1 - 2 of 2

Full-Text Articles in Food Science

A Portable And Automatic Biosensing Instrument For Detection Of Foodborne Pathogenic Bacteria In Food Samples, Zhuo Zhao Dec 2016

A Portable And Automatic Biosensing Instrument For Detection Of Foodborne Pathogenic Bacteria In Food Samples, Zhuo Zhao

Graduate Theses and Dissertations

Foodborne diseases are a growing public health problem. In recent years, many rapid detection methods have been reported, but most of them are still in lab research and not practical for use in the field. In this study, a portable and automatic biosensing instrument was designed and constructed for separation and detection of target pathogens in food samples using nanobead-based magnetic separation and quantum dots (QDs)-labeled fluorescence measurement. The instrument consisted of a laptop with LabVIEW software, a data acquisition card (DAQ), a fluorescent detector, micro-pumps, stepper motors, and 3D printed tube holders. First, a sample in a syringe was …


A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu Dec 2016

A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu

Graduate Theses and Dissertations

This research focused on the application of electrochemical biosensors for the rapid detection of pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium, in foods. The possible presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food companies. Therefore, the demand for rapid and sensitive methods to detect foodborne pathogens is growing. In this research, an impedimetric immunosensor was first developed for the rapid detection of E. coli O157:H7 and S. Typhimurium in foods. It was based on the techniques of immunomagnetic separation, enzyme labelling, and electrochemical impedance spectroscopy …