Open Access. Powered by Scholars. Published by Universities.®

Entomology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Entomology

Advancing Behavioural Genomics By Considering Timescale, Clare C. Rittschof, Kimberly A. Hughes Feb 2018

Advancing Behavioural Genomics By Considering Timescale, Clare C. Rittschof, Kimberly A. Hughes

Entomology Faculty Publications

Animal behavioural traits often covary with gene expression, pointing towards a genomic constraint on organismal responses to environmental cues. This pattern highlights a gap in our understanding of the time course of environmentally responsive gene expression, and moreover, how these dynamics are regulated. Advances in behavioural genomics explore how gene expression dynamics are correlated with behavioural traits that range from stable to highly labile. We consider the idea that certain genomic regulatory mechanisms may predict the timescale of an environmental effect on behaviour. This temporally minded approach could inform both organismal and evolutionary questions ranging from the remediation of early …


A Model Species For Agricultural Pest Genomics: The Genome Of The Colorado Potato Beetle, Leptinotarsa Decemlineata (Coleoptera: Chrysomelidae), Sean D. Schoville, Yolanda H. Chen, Martin N. Andersson, Joshua B. Benoit, Anita Bhandari, Julia H. Bowsher, Kristian Brevik, Kaat Cappelle, Mei-Ju M. Chen, Anna K. Childers, Christopher Childers, Olivier Christiaens, Justin Clements, Elise M. Didion, Elena N. Elpidina, Patamarerk Engsontia, Markus Friedrich, Inmaculada García-Robles, Richard A. Gibbs, Chandan Goswami, Alessandro Grapputo, Kristina Gruden, Marcin Grynberg, Bernard Henrissat, Emily C. Jennings, Jeffery W. Jones, Megha Kalsi, Sher A. Khan, Abhishek Kumar, Fei Li, Vincent Lombard, Subba Reddy Palli, June-Sun Yoon Jan 2018

A Model Species For Agricultural Pest Genomics: The Genome Of The Colorado Potato Beetle, Leptinotarsa Decemlineata (Coleoptera: Chrysomelidae), Sean D. Schoville, Yolanda H. Chen, Martin N. Andersson, Joshua B. Benoit, Anita Bhandari, Julia H. Bowsher, Kristian Brevik, Kaat Cappelle, Mei-Ju M. Chen, Anna K. Childers, Christopher Childers, Olivier Christiaens, Justin Clements, Elise M. Didion, Elena N. Elpidina, Patamarerk Engsontia, Markus Friedrich, Inmaculada García-Robles, Richard A. Gibbs, Chandan Goswami, Alessandro Grapputo, Kristina Gruden, Marcin Grynberg, Bernard Henrissat, Emily C. Jennings, Jeffery W. Jones, Megha Kalsi, Sher A. Khan, Abhishek Kumar, Fei Li, Vincent Lombard, Subba Reddy Palli, June-Sun Yoon

Entomology Faculty Publications

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and …