Open Access. Powered by Scholars. Published by Universities.®

Entomology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entomology

Composition Of The Survival Motor Neuron (Smn) Complex In Drosophila Melanogaster, A. Gregory Matera, Amanda C. Raimer, Casey A. Schmidt, Jo A. Kelly, Gaith N. Droby, David Baillat, Sara Ten Have, Angus I. Lamond, Eric J. Wagner, Kelsey M. Gray Feb 2019

Composition Of The Survival Motor Neuron (Smn) Complex In Drosophila Melanogaster, A. Gregory Matera, Amanda C. Raimer, Casey A. Schmidt, Jo A. Kelly, Gaith N. Droby, David Baillat, Sara Ten Have, Angus I. Lamond, Eric J. Wagner, Kelsey M. Gray

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila …


Self-Oligomerization Regulates Stability Of Survival Motor Neuron Protein Isoforms By Sequestering An ScfSlmb Degron, Kelsey M. Gray, Kevin A. Kaifer, David Baillat, Ying Wen, Thomas R. Bonacci, Allison D. Ebert, Amanda C. Raimer, Ashlyn M. Spring, Sara Ten Have, Jacqueline J. Glascock, Kushol Gupta, Gregory D. Van Duyne, Michael J. Emanuele, Angus I. Lamond, Eric J. Wagner, Christian L. Lorson, A. Gregory Matera Mar 2018

Self-Oligomerization Regulates Stability Of Survival Motor Neuron Protein Isoforms By Sequestering An ScfSlmb Degron, Kelsey M. Gray, Kevin A. Kaifer, David Baillat, Ying Wen, Thomas R. Bonacci, Allison D. Ebert, Amanda C. Raimer, Ashlyn M. Spring, Sara Ten Have, Jacqueline J. Glascock, Kushol Gupta, Gregory D. Van Duyne, Michael J. Emanuele, Angus I. Lamond, Eric J. Wagner, Christian L. Lorson, A. Gregory Matera

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. …


Sma-Causing Missense Mutations In Survival Motor Neuron (Smn) Display A Wide Range Of Phenotypes When Modeled In Drosophila, Kavita Praveen, Ying Wen, Kelsey M. Gray, John J. Noto, Akash R. Patlolla, Gregory D. Van Duyne, A. Gregory Matera Aug 2014

Sma-Causing Missense Mutations In Survival Motor Neuron (Smn) Display A Wide Range Of Phenotypes When Modeled In Drosophila, Kavita Praveen, Ying Wen, Kelsey M. Gray, John J. Noto, Akash R. Patlolla, Gregory D. Van Duyne, A. Gregory Matera

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of …