Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Ecology and Evolutionary Biology

Seed Germination Responses To Seasonal Temperature And Drought Stress Are Species‐Specific But Not Related To Seed Size In A Desert Steppe: Implications For Effect Of Climate Change On Community Structure, Fengyan Yi, Zhaoren Wang, Carol C. Baskin, Jerry M. Baskin, Ruhan Ye, Hailian Sun, Yuanyuan Zhang, Xuehua Ye, Guofang Liu, Xuejun Yang, Zhenying Huang Feb 2019

Seed Germination Responses To Seasonal Temperature And Drought Stress Are Species‐Specific But Not Related To Seed Size In A Desert Steppe: Implications For Effect Of Climate Change On Community Structure, Fengyan Yi, Zhaoren Wang, Carol C. Baskin, Jerry M. Baskin, Ruhan Ye, Hailian Sun, Yuanyuan Zhang, Xuehua Ye, Guofang Liu, Xuejun Yang, Zhenying Huang

Biology Faculty Publications

Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, …


Granite Rock Outcrops: An Extreme Environment For Soil Nematodes?, Erin Austin, Katharine Semmens, Charles Parsons, Amy M. Treonis Mar 2009

Granite Rock Outcrops: An Extreme Environment For Soil Nematodes?, Erin Austin, Katharine Semmens, Charles Parsons, Amy M. Treonis

Biology Faculty Publications

We studied soil nematode communities from the surface of granite flatrock outcrops in the eastern Piedmont region of the United States. The thin soils that develop here experience high light intensity and extreme fluctuations in temperature and moisture and host unique plant communities. We collected soils from outcrop microsites in Virginia (VA) and North Carolina (NC) in various stages of succession (Primitive, Minimal, and Mature) and compared soil properties and nematode communities to those of adjacent forest soils. Nematodes were present in most outcrop soils, with densities comparable to forest soils (P > 0.05). Nematode communities in Mature and Minimal soils …