Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Ecology and Evolutionary Biology

An Integrative Investigation Of The Synechococcus A/B Clade During Adaptive Radiation At The Upper Thermal Limit Of Phototrophy, Christopher L. Pierpont Jan 2022

An Integrative Investigation Of The Synechococcus A/B Clade During Adaptive Radiation At The Upper Thermal Limit Of Phototrophy, Christopher L. Pierpont

Graduate Student Theses, Dissertations, & Professional Papers

Thermophilic microorganisms have been scientifically observed since the early nineteenth century and have spurred many questions about the limits of life and the capacity of organisms to survive extreme conditions. Decades of research on thermophile proteins and genomes have yielded several proposed correlates of temperature that may contribute to adaptation of bacteria and archaea to high temperature. However, many of the generalizations reported are drawn from analyses of deeply divergent taxa or from individual case studies in isolation from mesophilic relatives. Members of the Synechococcus A/B (SynAB) group are the only cyanobacteria with members able to grow above 65 °C …


Contributions Of Gene Copy Number Variation To Genome Evolution And Local Adaptation Of The Cyanobacterium Acaryochloris, Amy L. Gallagher Jan 2017

Contributions Of Gene Copy Number Variation To Genome Evolution And Local Adaptation Of The Cyanobacterium Acaryochloris, Amy L. Gallagher

Graduate Student Theses, Dissertations, & Professional Papers

Acaryochloris is a recently discovered genus of cyanobacteria, unique in its use of an uncommon chlorophyll as its major photosynthetic pigment, and in its peculiar genome dynamics. Members of this genus exhibit increased genic copy number variation (CNV), which is thought to be primarily derived from gene duplications and horizontal gene transfer (HGT). Acaryochloris provides an ideal system to explore mechanisms behind maintenance of gene duplicates and the influence of CNV in local adaptation. Here, I propose a mechanism for retention of gene duplicates of the bacterial recombinase, RecA, in Acaryochloris genomes and provide preliminary evidence that these paralogs are …