Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Ecology and Evolutionary Biology

Opposing Community Assembly Patterns For Dominant And Nondominant Plant Species In Herbaceous Ecosystems Globally, Carlos Alberto Arnillas, Elizabeth T. Borer, Eric W. Seabloom, Juan Alberti, Selene Baez, Jonathan D. Bakker, Elizabeth H. Boughton, Yvonne M. Buckley, Miguel Nuno Bugalho, Ian Donohue, John Dwyer, Jennifer Firn, Riley Gridzak, Nicole Hagenah, Yann Hautier, Aveliina Helm, Anke Jentsch, Johannes M. H. Knops, Kimberly J. Komatsu, Lauri Laanisto, Rebecca L. Mcculley Nov 2021

Opposing Community Assembly Patterns For Dominant And Nondominant Plant Species In Herbaceous Ecosystems Globally, Carlos Alberto Arnillas, Elizabeth T. Borer, Eric W. Seabloom, Juan Alberti, Selene Baez, Jonathan D. Bakker, Elizabeth H. Boughton, Yvonne M. Buckley, Miguel Nuno Bugalho, Ian Donohue, John Dwyer, Jennifer Firn, Riley Gridzak, Nicole Hagenah, Yann Hautier, Aveliina Helm, Anke Jentsch, Johannes M. H. Knops, Kimberly J. Komatsu, Lauri Laanisto, Rebecca L. Mcculley

Plant and Soil Sciences Faculty Publications

Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic …


Crop Pests And Predators Exhibit Inconsistent Responses To Surrounding Landscape Composition, Daniel S. Karp, Rebecca Chaplin-Kramer, Timothy D. Meehan, Emily A. Martin, Fabrice Declerck, Heather Grab, Claudio Gratton, Lauren Hunt, Ashley E. Larsen, Alejandra Martínez-Salinas, Megan E. O’Rourke, Adrien Rusch, Katja Poveda, Mattias Jonsson, Jay A. Rosenheim, Nancy A. Schellhorn, Teja Tscharntke, Stephen D. Wratten, Wei Zhang, Aaron L. Iverson, Lynn S. Adler, Matthias Albrecht, Audrey Alignier, Gina M. Angelella, Muhammad Zubair Anjum, Jacques Avelino, Péter Batáry, Johannes M. Baveco, Felix J. J. A. Bianchi, Klaus Birkhofer, David J. Gonthier Aug 2018

Crop Pests And Predators Exhibit Inconsistent Responses To Surrounding Landscape Composition, Daniel S. Karp, Rebecca Chaplin-Kramer, Timothy D. Meehan, Emily A. Martin, Fabrice Declerck, Heather Grab, Claudio Gratton, Lauren Hunt, Ashley E. Larsen, Alejandra Martínez-Salinas, Megan E. O’Rourke, Adrien Rusch, Katja Poveda, Mattias Jonsson, Jay A. Rosenheim, Nancy A. Schellhorn, Teja Tscharntke, Stephen D. Wratten, Wei Zhang, Aaron L. Iverson, Lynn S. Adler, Matthias Albrecht, Audrey Alignier, Gina M. Angelella, Muhammad Zubair Anjum, Jacques Avelino, Péter Batáry, Johannes M. Baveco, Felix J. J. A. Bianchi, Klaus Birkhofer, David J. Gonthier

Entomology Faculty Publications

The idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop …


Local Loss And Spatial Homogenization Of Plant Diversity Reduce Ecosystem Multifunctionality, Yann Hautier, Forest Isbell, Elizabeth T. Borer, Eric W. Seabloom, W. Stanley Harpole, Eric M. Lind, Andrew S. Macdougall, Carly J. Stevens, Peter B. Adler, Juan Alberti, Jonathan D. Bakker, Lars A. Brudvig, Yvonne M. Buckley, Marc Cadotte, Maria C. Caldeira, Enrique J. Chaneton, Chengjin Chu, Pedro Daleo, Christopher R. Dickman, John M. Dwyer, Anu Eskelinen, Philip A Fay, Jennifer Firn, Nicole Hagenah, Helmut Hillebrand, Oscar Iribarne, Kevin P. Kirkman, Johannes M. H. Knops, Kimberly J. La Pierre, Rebecca L. Mcculley Jan 2018

Local Loss And Spatial Homogenization Of Plant Diversity Reduce Ecosystem Multifunctionality, Yann Hautier, Forest Isbell, Elizabeth T. Borer, Eric W. Seabloom, W. Stanley Harpole, Eric M. Lind, Andrew S. Macdougall, Carly J. Stevens, Peter B. Adler, Juan Alberti, Jonathan D. Bakker, Lars A. Brudvig, Yvonne M. Buckley, Marc Cadotte, Maria C. Caldeira, Enrique J. Chaneton, Chengjin Chu, Pedro Daleo, Christopher R. Dickman, John M. Dwyer, Anu Eskelinen, Philip A Fay, Jennifer Firn, Nicole Hagenah, Helmut Hillebrand, Oscar Iribarne, Kevin P. Kirkman, Johannes M. H. Knops, Kimberly J. La Pierre, Rebecca L. Mcculley

Plant and Soil Sciences Faculty Publications

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected …