Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Ecology and Evolutionary Biology

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade Nov 2017

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store roughly one-third of the terrestrial soil carbon and release the potent greenhouse gas methane (CH4) to the atmosphere, making these wetlands among the most important ecosystems in the global carbon cycle. Despite their importance, the controls of anaerobic decomposition of organic matter to carbon dioxide (CO2) and CH4 within peatlands are not well understood. It is known, however, that the enzymes responsible for CH4 production require cobalt, iron and nickel, and there is a growing appreciation for the potential role of trace metal limitation in anaerobic decomposition. To explore the possibility of …


Solid-Phase Organic Matter Reduction Regulates Anaerobic Decomposition In Bog Soil, Jason K. Keller, Kimberly K. Takagi Jan 2013

Solid-Phase Organic Matter Reduction Regulates Anaerobic Decomposition In Bog Soil, Jason K. Keller, Kimberly K. Takagi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store globally significant amounts of carbon and are important sources of the greenhouse gas methane (CH4) to the atmosphere. However, for reasons which are not well understood, many peatland soils produce smaller amounts of CH4 than theoretically predicted, and carbon dioxide (CO2) produced during anaerobic decomposition in peatland soils cannot be accounted for by commonly measured microbial processes. Here we show that the reduction of solid-phase organic matter (i.e., humic substances) suppresses CH4 production in a bog soil and can be responsible for 33–61% of the total carbon mineralization in this soil. These results demonstrate that the reduction of …


Nutrient Control Of Microbial Carbon Cycling Along An Ombrotrophicminerotrophic Peatland Gradient, Jason K. Keller, Angela K. Bauers, Scott D. Bridgham, Laurie E. Kellogg, Colleen M. Iversen Jan 2006

Nutrient Control Of Microbial Carbon Cycling Along An Ombrotrophicminerotrophic Peatland Gradient, Jason K. Keller, Angela K. Bauers, Scott D. Bridgham, Laurie E. Kellogg, Colleen M. Iversen

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Future climate change and other anthropogenic activities are likely to increase nutrient availability in many peatlands, and it is important to understand how these additional nutrients will influence peatland carbon cycling. We investigated the effects of nitrogen and phosphorus on aerobic CH4 oxidation, anaerobic carbon mineralization (as CO2 and CH4 production), and anaerobic nutrient mineralization in a bog, an intermediate fen, and a rich fen in the Upper Peninsula of Michigan. We utilized a 5-week laboratory nutrient amendment experiment in conjunction with a 6-year field nutrient fertilization experiment to consider how the relative response to nitrogen and phosphorus differed among …