Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Chapman University

Bog

Articles 1 - 2 of 2

Full-Text Articles in Ecology and Evolutionary Biology

Solid-Phase Organic Matter Reduction Regulates Anaerobic Decomposition In Bog Soil, Jason K. Keller, Kimberly K. Takagi Jan 2013

Solid-Phase Organic Matter Reduction Regulates Anaerobic Decomposition In Bog Soil, Jason K. Keller, Kimberly K. Takagi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store globally significant amounts of carbon and are important sources of the greenhouse gas methane (CH4) to the atmosphere. However, for reasons which are not well understood, many peatland soils produce smaller amounts of CH4 than theoretically predicted, and carbon dioxide (CO2) produced during anaerobic decomposition in peatland soils cannot be accounted for by commonly measured microbial processes. Here we show that the reduction of solid-phase organic matter (i.e., humic substances) suppresses CH4 production in a bog soil and can be responsible for 33–61% of the total carbon mineralization in this soil. These results demonstrate that the reduction of …


Pathways Of Anaerobic Carbon Cycling Across An Ombrotrophic–Minerotrophic Peatland Gradient, Jason K. Keller, Scott D. Bridgham Jan 2007

Pathways Of Anaerobic Carbon Cycling Across An Ombrotrophic–Minerotrophic Peatland Gradient, Jason K. Keller, Scott D. Bridgham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatland soils represent globally significant stores of carbon, and understanding carbon cycling pathways in these ecosystems has important implications for global climate change. We measured aceticlastic and autotrophic methanogenesis, sulfate reduction, denitrification, and iron reduction in a bog, an intermediate fen, and a rich fen in the Upper Peninsula of Michigan for one growing season. In 3-d anaerobic incubations of slurried peat, denitrification and iron reduction were minor components of anaerobic carbon mineralization. Experiments using 14C-labeled methanogenic substrates showed that methanogenesis in these peatlands was primarily through the aceticlastic pathway, except early in the growing season in more ombrotrophic peatlands, …