Open Access. Powered by Scholars. Published by Universities.®

Ecology and Evolutionary Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Ecology and Evolutionary Biology

Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao Dec 2020

Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao

Doctoral Dissertations

Tropical forests, relative to other terrestrial ecosystems, exchange the largest amount of carbon with the atmosphere and also constitute a significant carbon sink. However, nutrient limitation, particularly of phosphorus (P), could limit growth of tropical forests and their function with the global carbon cycle. Thus, understanding root mechanisms to acquire P is necessary to representing the P cycle and corresponding interactions with plant growth. A large portion of total soil P in tropical forests occurs in organic forms, only accessible through root and microbial production of phosphatase enzymes. These phosphatase enzymes mineralize organic P into orthophosphate, the form of P …


From Genes To Ecosystems: Resource Availability And Dna Methylation Drive The Diversity And Abundance Of Restriction Modification Systems In Prokaryotes, Spiridon E. Papoulis Jun 2020

From Genes To Ecosystems: Resource Availability And Dna Methylation Drive The Diversity And Abundance Of Restriction Modification Systems In Prokaryotes, Spiridon E. Papoulis

Doctoral Dissertations

Together, prokaryotic hosts and their viruses numerically dominate the planet and are engaged in an eternal struggle of hosts evading viral predation and viruses overcoming defensive mechanisms employed by their hosts. Prokaryotic hosts have been found to carry several viral defense systems in recent years with Restriction Modification systems (RMs) were the first discovered in the 1950s. While we have biochemically elucidated many of these systems in the last 70 years, we still struggle to understand what drives their gain and loss in prokaryotic genomes. In this work, we take a computational approach to understand the underlying evolutionary drivers of …