Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Cell and Developmental Biology

Role Of Heat Shock Transcription Factor 1 In Ovarian Cancer Epithelial-Mesenchymal Transition And Drug Sensitivity, Chase David Powell Nov 2017

Role Of Heat Shock Transcription Factor 1 In Ovarian Cancer Epithelial-Mesenchymal Transition And Drug Sensitivity, Chase David Powell

USF Tampa Graduate Theses and Dissertations

The heat shock response (HSR) is a robust cellular reaction to mitigate protein damage from heat and other challenges to the proteome. This protective molecular program in humans is controlled by heat shock transcription factor 1 (HSF1). Activation of HSF1 leads to the induction of an array of cytoprotective genes, many of which code for chaperones. These chaperones, known as heat shock proteins (HSPs), are responsible for maintaining the functional integrity of the proteome. HSPs achieve this by promoting proper folding and assembly of nascent proteins, refolding denatured proteins, and processing for degradation proteins and aggregates which cannot be returned …


The Role Of Sgs1 And Exo1 In The Maintenance Of Genome Stability., Lillian Campos-Doerfler Nov 2017

The Role Of Sgs1 And Exo1 In The Maintenance Of Genome Stability., Lillian Campos-Doerfler

USF Tampa Graduate Theses and Dissertations

Genome instability is a hallmark of human cancers. Patients with Bloom’s syndrome, a rare chromosome breakage syndrome caused by inactivation of the RecQ helicase BLM, result in phenotypes associated with accelerated aging and develop cancer at a very young age. Patients with Bloom’s syndrome exhibit hyper-recombination, but the role of BLM and increased genomic instability is not fully characterized. Sgs1, the only member of the RecQ family of DNA helicases in Saccharomyces cerevisiae, is known to act both in early and late stages of homology-dependent repair of DNA damage. Exo1, a 5′–3′ exonuclease, first discovered to play a role …


Regulation Of Extracellular Signal-Regulated Kinase By Histone Deacetylase 6, Jheng-Yu Wu Jul 2017

Regulation Of Extracellular Signal-Regulated Kinase By Histone Deacetylase 6, Jheng-Yu Wu

USF Tampa Graduate Theses and Dissertations

Extracellular signal-regulated kinases 1/2 (ERK1/2) are important kinases regulating cell proliferation and cell migration, and have been established as therapeutic targets for cancer treatment. Previously, we found that ERK1 phosphorylates histone deacetylase 6 (HDAC6) to regulate its enzymatic activity. However, whether HDAC6 reciprocally modulates ERK1 activity is unknown. Here, we have discovered that ERK1/2 are acetylated proteins and shown that HDAC6 manipulates ERK1’s kinase activity via deacetylation. We demonstrated that both ERK1 and ERK2 interact with HDAC6 physically. We showed that the acetylation level of GST-ERK1/2 increased in a dose- and time-dependent manner upon treatment with a pan-HDAC inhibitor, Trichostatin …


The Role Of Elevated Hyaluronan-Mediated Motility Receptor (Rhamm/Hmmr) In Ovarian Cancer, Stephanie T. Buttermore Jul 2017

The Role Of Elevated Hyaluronan-Mediated Motility Receptor (Rhamm/Hmmr) In Ovarian Cancer, Stephanie T. Buttermore

USF Tampa Graduate Theses and Dissertations

Ovarian cancer (OC) has the highest mortality among gynecological cancers. The high mortality is associated with the lack of an accurate screening tool to detect disease in early stage. As a result the majority of OCs are diagnosed in late stage. Further, the molecular events responsible for malignant transformation in the ovary remain poorly understood. Consequently, delineating key molecular players driving OC could help elucidate potential diagnostic, prognostic and therapeutic targets.

Receptor for hyaluronan-mediated motility (RHAMM) belongs to a group of hyaladherins, which share a common ability to bind to hyaluronan (HA). Intracellularly, RHAMM is involved in microtubule spindle assembly …


Functional Roles Of Matrix Metalloproteinases In Bone Metastatic Prostate Cancer, Jeremy S. Frieling May 2017

Functional Roles Of Matrix Metalloproteinases In Bone Metastatic Prostate Cancer, Jeremy S. Frieling

USF Tampa Graduate Theses and Dissertations

Skeletal metastasis is a lethal component of many advanced cancers including prostate, the second most common cancer among men. Patients whose prostate cancer is localized and detected early benefit from multiple treatment options ranging from active surveillance to radiation and surgery, resulting in a 5-year survival rate of nearly 100%. Unfortunately, the prognosis and survival for patients with advanced metastatic disease is much worse due to the highly aggressive nature of the disease and a paucity of treatment options. Understanding the mechanisms and interactions that occur between metastatic cancer cells and the bone will enable the future treatment landscape for …


Acetaminophen Associated Neurotoxicity And Its Relevance To Neurodevelopmental Disorders, Seol-Hee Kim Apr 2017

Acetaminophen Associated Neurotoxicity And Its Relevance To Neurodevelopmental Disorders, Seol-Hee Kim

USF Tampa Graduate Theses and Dissertations

Autism is a lifelong neurodevelopmental disorder. The etiology of autism still remains unclear due to the heterogeneous and complex nature of the disorder, however synergistic actions between genetic components and environmental factors have been suggested. Acetaminophen (APAP) is one of the most popular over-the-counter drugs that possess antipyretic and analgesic effects. It is considered a relatively safe and effective within therapeutic doses. Recently, early exposure to APAP has been suggested to be one of the underlying cause of autism. Children are often prescribed APAP to lessen fever or irritability after vaccination during the first year, and APAP may adversely affect …


Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell Apr 2017

Uncovering Transcriptional Activators And Targets Of Hsf-1 In Caenorhabditis Elegans, Jessica Brunquell

USF Tampa Graduate Theses and Dissertations

In order to survive, cells must be able to cope with a variety of environmental stressors. The heat shock response (HSR) is a pro-survival mechanism employed by cells in response to protein denaturing stress, such as heat. Since its discovery in 1960, the heat shock response has been found to be regulated by the transcription factor heat shock factor 1 (HSF1). During periods of increased stress, HSF1 undergoes a multi-step process of activation that involves homotrimerization, DNA-binding, and post-translational regulatory modifications, all of which ultimately function to control the transcription of chaperone genes. These chaperone genes encode molecular chaperone proteins …


Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers Mar 2017

Mass-Spectrometry Based Proteomics Of Age-Related Changes In Murine Microglia, Antwoine Flowers

USF Tampa Graduate Theses and Dissertations

The last century has seen a steady increase in the extension of the average lifespan. This has concomitantly produced higher incidences of age-related chronic degenerative diseases like Alzheimer’s and Parkinson’s diseases. Age is the single greatest risk factor for the development of not just these degenerative conditions but cancer as well. The aged niche undergoes a number of maladaptive changes that allow underlying conditions to present and progress. Exactly which changes, contribute to the progression of which disease is currently an area of intense study. However, these answers often present therapeutic targets for disease prevention. Age is characterized by a …


Mechanisms Of Ikbke Activation In Cancer, Sridevi Challa Jan 2017

Mechanisms Of Ikbke Activation In Cancer, Sridevi Challa

USF Tampa Graduate Theses and Dissertations

Cancer is the second leading cause of death in the USA and it is expected to surpass heart diseases making it important to understand the underlying mechanisms of cancer. The efforts to target single signaling molecule showed little success in increasing the patient survival and it can be due to increased compensation for cell survival by alternative pathway activations. Hence comprehensive understanding of the alternative signaling pathways may help us treat cancer better. Chronic inflammation is attributed to increased risk of cancer and emerging studies show the growing importance of both canonical and non-canonical IκB kinases such as IKKα, IKKβ, …


Towards The Complete Proteinaceous Regulome Of Acinetobacter Baumannii, Leila G. Casella, Andy Weiss, Ernesto Pérez-Rueda, J Antonio Ibarra, Lindsey N. Shaw Jan 2017

Towards The Complete Proteinaceous Regulome Of Acinetobacter Baumannii, Leila G. Casella, Andy Weiss, Ernesto Pérez-Rueda, J Antonio Ibarra, Lindsey N. Shaw

Molecular Biosciences Faculty Publications

The emergence of Acinetobacter baumannii strains, with broad multidrug-resistance phenotypes and novel virulence factors unique to hypervirulent strains, presents a major threat to human health worldwide. Although a number of studies have described virulence-affecting entities for this organism, very few have identified regulatory elements controlling their expression. Previously, our group has documented the global identification and curation of regulatory RNAs in A. baumannii. As such, in the present study, we detail an extension of this work, the performance of an extensive bioinformatic analysis to identify regulatory proteins in the recently annotated genome of the highly virulent AB5075 strain. In so …


A Family Of Genus-Specific Rnas In Tandem With Dna-Binding Proteins Control Expression Of The Bada Major Virulence Factor Gene In Bartonella Henselae, Nhan Tu, Ronan K. Carroll, Andy Weiss, Lindsey N. Shaw, Gael Nicolas, Sarah Thomas, Amorce Lima, Udoka Okaro, Burt Anderson Jan 2017

A Family Of Genus-Specific Rnas In Tandem With Dna-Binding Proteins Control Expression Of The Bada Major Virulence Factor Gene In Bartonella Henselae, Nhan Tu, Ronan K. Carroll, Andy Weiss, Lindsey N. Shaw, Gael Nicolas, Sarah Thomas, Amorce Lima, Udoka Okaro, Burt Anderson

Molecular Biosciences Faculty Publications

Bartonella henselae is a gram-negative zoonotic bacterium that causes infections in humans including endocarditis and bacillary angiomatosis. B. henselae has been shown to grow as large aggregates and form biofilms in vitro. The aggregative growth and the angiogenic host response requires the trimeric autotransporter adhesin BadA. We examined the transcriptome of the Houston-1 strain of B. henselae using RNA-seq revealing nine novel, highly-expressed intergenic transcripts (Bartonella regulatory transcript, Brt1-9). The Brt family of RNAs is unique to the genus Bartonella and ranges from 194 to 203 nucleotides with high homology and stable predicted secondary structures. Immediately downstream of each …