Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap Dec 2005

Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap

Dartmouth Scholarship

Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently …


Crystal Structure Of The Gtpase Domain Of Rat Dynamin 1, Thomas F. Reubold, Susanne Eschenburg, Andreas Becker, Marilyn Leonard, Sandra L. Schmid, Richard B. Vallee, F. Jon Kull, Dietmar J. Manstein Jan 2005

Crystal Structure Of The Gtpase Domain Of Rat Dynamin 1, Thomas F. Reubold, Susanne Eschenburg, Andreas Becker, Marilyn Leonard, Sandra L. Schmid, Richard B. Vallee, F. Jon Kull, Dietmar J. Manstein

Dartmouth Scholarship

Here, we present the 1.9-A crystal structure of the nucleotide-free GTPase domain of dynamin 1 from Rattus norvegicus. The structure corresponds to an extended form of the canonical GTPase fold observed in Ras proteins. Both nucleotide-binding switch motifs are well resolved, adopting conformations that closely resemble a GTP-bound state not previously observed for nucleotide-free GTPases. Two highly conserved arginines, Arg-66 and Arg-67, greatly restrict the mobility of switch I and are ideally positioned to relay information about the nucleotide state to other parts of the protein. Our results support a model in which switch I residue Arg-59 gates GTP binding …