Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell and Developmental Biology

Epigenetic Regulation Of Genomic Imprinting During Early Mammalian Embryonic Development, Chelsea Marcho Nov 2018

Epigenetic Regulation Of Genomic Imprinting During Early Mammalian Embryonic Development, Chelsea Marcho

Doctoral Dissertations

Mammalian development involves remarkable changes, starting from a single-cell, totipotent zygote and ending with a developed organism comprised of diverse cells types with distinct morphologies, structures, and functions. Within three days of murine development, the two parental genomes merge into a single nucleus, begin zygotic gene expression, undergo epigenetic remodeling, and make the first lineage decisions. Diversity in cell-types is possible even though cells share the same genome. This diversity is achieved by the tight regulation of differential transcriptional programs. There are many ways these transcriptional programs can be initiated. Epigenetic alterations to the genome can drive transcriptional changes. Epigenetic …


Zinc Sunscreens Affect Development Of Strongylocentrotus Purpuratus Embryos, Brittany E. Cunningham, Nikki L. Adams Jun 2018

Zinc Sunscreens Affect Development Of Strongylocentrotus Purpuratus Embryos, Brittany E. Cunningham, Nikki L. Adams

Master's Theses

The growing popularity of physical sunscreens will also lead to an increased release of the ingredients from zinc oxide (ZnO) sunscreens into marine environments. Though zinc (Zn) is a necessary micronutrient in the ocean, greater than natural Zn concentrations are being released into marine environments by use of sunscreens. The extent of the consequences of the addition of Zn to the ocean are not fully understood. We investigated effects of materials released by zinc oxide (ZnO) sunscreens on the development of California purple sea urchin, Strongylocentrotus purpuratus. Embryos developed in various concentrations of Zn, the sources of which included …


Stimulating Canonical Wnt Signaling In Pituitary Progenitors Inhibits Differentiation Of Hormone Cell Types, Tanner F. Coleman Apr 2018

Stimulating Canonical Wnt Signaling In Pituitary Progenitors Inhibits Differentiation Of Hormone Cell Types, Tanner F. Coleman

Senior Theses

The mouse pituitary gland secretes hormones that regulate many physiological processes including growth, stress response, and reproduction. The canonical WNT signaling pathway, activation of which results in nuclear accumulation of β-CATENIN and transcription of target genes including LEF1, is crucial for proper development of the pituitary gland. Pituitary progenitors that lack β-CATENIN at embryonic day of development 8.5 (E8.5) cannot form three of the six cell types of the anterior pituitary that produce growth hormone (GH), thyroid stimulating hormone (TSH), and prolactin (PRL). Additionally, stimulating canonical WNT signaling through creation of degradation-resistant β-CATENIN at E9.5 causes pituitary tumors and results …


The Developmental Implications Of The Regulatory Relationship Between Cjun And Oct4 In Murine Embryonic Stem Cells, Rachel E. Brewer Jan 2018

The Developmental Implications Of The Regulatory Relationship Between Cjun And Oct4 In Murine Embryonic Stem Cells, Rachel E. Brewer

Cal Poly Humboldt theses and projects

As cells transition from the point of fertilization through the process of embryonic development, many molecular changes occur that affect cell fate. At the blastocyst stage, the earliest distinction, two separate cell populations arise. The trophectoderm cells will generate all of the extraembryonic tissues while the inner cell mass will yield all of the embryonic tissues. These cells, which generate the organism, are termed pluripotent at this stage and found within the inner cell mass (ICM). A variety of genetic mechanisms that regulate this event have been characterized. Here, we examined the effect of cJun expression in regulating Oct4, a …


Retinoic Acid Receptor Isoform-Specific Control Of Mouse Salivary Gland Development And Regeneration, Kara Desantis Jan 2018

Retinoic Acid Receptor Isoform-Specific Control Of Mouse Salivary Gland Development And Regeneration, Kara Desantis

Legacy Theses & Dissertations (2009 - 2024)

Controlled expansion and differentiation of progenitor cell populations is essential for organogenesis followed by continued maintenance of the population into and through adulthood. As the K5+ basal cell population is regulated by retinoic acid signaling, we interrogated the contribution of specific RAR isoforms to the regulation of these cells during submandibular salivary gland (SMG) organogenesis and regeneration. Retinoic acid has previously been shown to be involved in the development of the salivary gland, and recently, lack of retinoid signaling has been shown to impact the K5+ population of basal progenitor cells. Since retinoic acid is known to exert stimulatory effects …