Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

Differentiation Of Fetal Hematopoietic Stem Cells Requires Arid4b To Restrict Autocrine Kitlg/Kit-Src Signaling., In-Chi Young, Bogang Wu, Jaclyn Andricovich, Sung-Ting Chuang, Rong Li, Alexandros Tzatsos, Ray-Chang Wu, Mei-Yi Wu Nov 2021

Differentiation Of Fetal Hematopoietic Stem Cells Requires Arid4b To Restrict Autocrine Kitlg/Kit-Src Signaling., In-Chi Young, Bogang Wu, Jaclyn Andricovich, Sung-Ting Chuang, Rong Li, Alexandros Tzatsos, Ray-Chang Wu, Mei-Yi Wu

Anatomy and Regenerative Biology Faculty Publications

No abstract provided.


Corneal Nonmyelinating Schwann Cells Illuminated By Single-Cell Transcriptomics And Visualized By Protein Biomarkers., Paola Bargagna-Mohan, Gwendolyn Schultz, Bruce Rheaume, Ephraim F Trakhtenberg, Paul Robson, Sonali Pal-Ghosh, Mary Ann Stepp, Katherine S Given, Wendy B Macklin, Royce Mohan Mar 2021

Corneal Nonmyelinating Schwann Cells Illuminated By Single-Cell Transcriptomics And Visualized By Protein Biomarkers., Paola Bargagna-Mohan, Gwendolyn Schultz, Bruce Rheaume, Ephraim F Trakhtenberg, Paul Robson, Sonali Pal-Ghosh, Mary Ann Stepp, Katherine S Given, Wendy B Macklin, Royce Mohan

Anatomy and Regenerative Biology Faculty Publications

No abstract provided.


The Circadian Cryptochrome, Cry1, Is A Pro-Tumorigenic Factor That Rhythmically Modulates Dna Repair., Ayesha A Shafi, Chris M Mcnair, Jennifer J Mccann, Mohammed Alshalalfa, Anton Shostak, Tesa M Severson, Yanyun Zhu, Andre Bergman, Nicolas Gordon, Amy C Mandigo, Saswati N Chand, Peter Gallagher, Emanuela Dylgjeri, Talya S Laufer, Irina A Vasilevskaya, Matthew J Schiewer, Michael Brunner, Felix Y Feng, Wilbert Zwart, Karen E Knudsen Jan 2021

The Circadian Cryptochrome, Cry1, Is A Pro-Tumorigenic Factor That Rhythmically Modulates Dna Repair., Ayesha A Shafi, Chris M Mcnair, Jennifer J Mccann, Mohammed Alshalalfa, Anton Shostak, Tesa M Severson, Yanyun Zhu, Andre Bergman, Nicolas Gordon, Amy C Mandigo, Saswati N Chand, Peter Gallagher, Emanuela Dylgjeri, Talya S Laufer, Irina A Vasilevskaya, Matthew J Schiewer, Michael Brunner, Felix Y Feng, Wilbert Zwart, Karen E Knudsen

Department of Cancer Biology Faculty Papers

Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required …