Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Cell and Developmental Biology

Functional Analyses Of The Polycomb-Group Genes In Sea Lamprey Embryos Undergoing Programmed Dna Loss, Cody Saraceno Jan 2024

Functional Analyses Of The Polycomb-Group Genes In Sea Lamprey Embryos Undergoing Programmed Dna Loss, Cody Saraceno

Theses and Dissertations--Biology

During early embryonic development, the sea lamprey (Petromyzon marinus) undergoes programmatic elimination of DNA from somatic progenitor cells in a process termed programmed genome rearrangement (PGR). Eliminated DNA eventually becomes condensed into micronuclei, which are then physically degraded and permanently lost from the cell. Previous studies indicated that many of the genes eliminated during PGR have mammalian homologs that are bound by polycomb repressive complex (PRC) in embryonic stem cells. To test whether PRC components play a role in the faithful elimination of germline-specific sequences, we used a combination of CRISPR/Cas9 and lightsheet microscopy to investigate the impact …


Exploring The Molecular Basis Of Touch: A Comparative Analysis Of Gene Expression In Sensory Corpuscle-Rich And Corpuscle-Poor Skin Regions In The Duck, Thomas Hart Jan 2023

Exploring The Molecular Basis Of Touch: A Comparative Analysis Of Gene Expression In Sensory Corpuscle-Rich And Corpuscle-Poor Skin Regions In The Duck, Thomas Hart

Theses and Dissertations--Biology

Cutaneous touch is facilitated by discrete cellular complexes composed of non-neuronal cells associated with mechanoreceptor neuron endings. The non-neuronal cells of these cutaneous end organ complexes (CEOCs) are believed to contribute to touch, but their role in touch sensation remains unclear. To better understand the function of CEOC cells, we sought to characterize the transcriptional profile of CEOC-rich tissue and identify genes expressed in CEOC cells. Bill skin of the tactile foraging Pekin duck (Anas platyrhynchos) is dense with CEOCs, specifically the avian analogs of mammalian Pacinian and Meissner corpuscles, while corpuscles in duck foot skin are scarce. Using RNA …


Investigating The Role Of Chd7 And Sox11 In Retinal Cell Development And The Ocular Complications Of Charge Syndrome, Laura Krueger Jan 2022

Investigating The Role Of Chd7 And Sox11 In Retinal Cell Development And The Ocular Complications Of Charge Syndrome, Laura Krueger

Theses and Dissertations--Biology

Proper formation of the visual system requires the precise interaction of several embryonic cell lineages, including the neuroectoderm (forms the retina and retinal pigment epithelium), surface ectoderm (forms the lens), mesoderm and cranial neural crest cells (form the ocular blood vessels and anterior ocular structures). When this process is disrupted structural birth defects such as coloboma result, leading to pediatric visual deficits. Ocular developmental defects are often present in larger syndromic disorders. One example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Pathogenic variants in CHD7 have been …


Metabolic Diversity Among Fibroblasts From Regenerating And Non-Regenerating Mammals, Ebenezer Aryee Jan 2022

Metabolic Diversity Among Fibroblasts From Regenerating And Non-Regenerating Mammals, Ebenezer Aryee

Theses and Dissertations--Biology

Regeneration is a wound repair process that terminates in the restoration of tissue function and structure. Fibroblasts play pivotal roles in regenerative and fibrotic wound repair. Reports of extensive regenerative ability in mammals have been historically rare, but more recently spiny mice (Acomys) have emerged as a bona fide model of complex tissue regeneration. Recent work has indicated that fibroblasts from regenerators (Acomys and Oryctolagus) are more resistant to reactive oxygen species (ROS)-induced senescence compared to non-regenerating species, suggesting the influence of intrinsic cellular states on the fate of wound repair. Determining the basal metabolic signature …


The Role Of Sox4 In Ocular Morphogenesis And Retinal Differentiation, Rebecca Petersen Jan 2022

The Role Of Sox4 In Ocular Morphogenesis And Retinal Differentiation, Rebecca Petersen

Theses and Dissertations--Biology

Visual impairment ranges from mild forms that can be corrected with glasses to more severe cases that result in permanent loss of vision. Microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC) account for 11% of cases of pediatric blindness and are a result of improper ocular morphogenesis. Retinitis Pigmentosa (RP) is a retinal degenerative disease that affects 1 in 3000 people worldwide. It is a progressive disorder that initially begins with loss of vision in low light settings due to rod photoreceptor degeneration but progresses to complete blindness upon loss of cone photoreceptors. Currently, there is no cure for …


Understanding The Effects Of Embryonic Hyperglycemia On Retinal Development And Maintenance, Kayla Titialii-Torres Jan 2022

Understanding The Effects Of Embryonic Hyperglycemia On Retinal Development And Maintenance, Kayla Titialii-Torres

Theses and Dissertations--Biology

Hundreds of millions of people are affected by diabetes worldwide. Whether they are diagnosed with prediabetes or Type I or II diabetes, there are a variety of mechanisms in the pathogenesis of diabetes. Diabetes is a disease which consists of recurring states of hyperglycemia that can be difficult to manage due to either lack of insulin production or improper utilization of insulin. While these mechanisms of action differ, complications induced by diabetes occur in both poorly regulated Type I and II. Common complications of diabetes include nerve damage, kidney damage, and eye damage. Eye damage specifically is called diabetic retinopathy …


Identifying Epidermal Enriched Genes Required For Planarian Regeneration- Sp. Schmidtea Mediterranea, Pallob Barai Jan 2022

Identifying Epidermal Enriched Genes Required For Planarian Regeneration- Sp. Schmidtea Mediterranea, Pallob Barai

Theses and Dissertations--Biology

The outer epithelial layer covering an organism, commonly known as the epidermis, is crucial for maintaining homeostasis and for the wound healing processes after injury. The planarian epidermis allows flatworms to heal their wounds and virtually restore any missing tissues. Immediately after amputation, planarians contract their muscle and stretch their epidermis to heal the wound area. However, how the planarian epidermis coordinates with other tissues and mechanisms after the initial wound healing processes begins is not understood in detail. I hypothesized that epidermal cell stretching upon wound healing induces transcriptional changes that are required for effective regeneration. To test this …


Periocular Mesenchyme Heterogeneity During Morphogenesis Of The Vertebrate Ocular Anterior Segment, Kristyn L. Van Der Meulen Jan 2021

Periocular Mesenchyme Heterogeneity During Morphogenesis Of The Vertebrate Ocular Anterior Segment, Kristyn L. Van Der Meulen

Theses and Dissertations--Biology

The vertebrate eye is a complex organ, responsible for the primary sense with which we interact with our environment: vision. Development of the eye is a tightly regulated process, controlled by a vast network of genes. This process begins with eye morphogenesis, when the eye structure is formed through a series of morphogenetic movements and culminates in the creation of the optic cup, lens, and presumptive optic stalk. Next, retinal differentiation creates the critical cell layers of the retina needed to process light waves that enter the eye, including rod and cone photoreceptors, interneurons, and support cells. Failure in either …


Leveraging Transcriptomic Approaches To Identify Differences In Genetic Programming Driving Two Distinct Wound Healing Mechanisms, Regeneration And Fibrosis, In Acomys And Mus, Shishir K. Biswas Jan 2021

Leveraging Transcriptomic Approaches To Identify Differences In Genetic Programming Driving Two Distinct Wound Healing Mechanisms, Regeneration And Fibrosis, In Acomys And Mus, Shishir K. Biswas

Theses and Dissertations--Biology

Why can some animals and others cannot? This fundamental question has fueled scientists studying regeneration for hundreds of years since early observations in crayfish, salamanders and many other organisms. While most contemporary work in regeneration is done in a handful of species including salamanders, zebrafish and flatforms, these organisms lack a closely-related, non-regenerating sister species from which unique genetic differences can be identified. Additionally, while much has been learned from these organisms, they do not share fundamental biological traits with mammals (endothermy, metabolism and immune system) which limits the ability to translate this research for clinical medicine. To this end, …


Cellular Bioenergetics Regulates Cell Proliferation During Mammalian Regeneration, Sandeep Saxena Jan 2021

Cellular Bioenergetics Regulates Cell Proliferation During Mammalian Regeneration, Sandeep Saxena

Theses and Dissertations--Biology

Mammalian system consists of stress-sensing molecules that regulates their cellular response against damage, injury and oncogenic stress. During vertebrate regeneration, cells responding to injury re-enter the cell cycle and proliferate to form new tissue. Cell cycle re-entry or arrest is at least partly regulated by cellular senescence which negatively impacts the proliferative pool of cells during regeneration. What remains unclear is whether cells in regenerating systems possess an increased propensity to proliferate and are refractory to signals that induce senescence. My thesis work has focused on how fibroblasts from the ear pinna differentially regulate healing in highly regenerative mammals (e.g., …


Molecular Mechanisms Regulating Optic Fissure Fusion During Zebrafish Eye Development, Megan Weaver Jan 2021

Molecular Mechanisms Regulating Optic Fissure Fusion During Zebrafish Eye Development, Megan Weaver

Theses and Dissertations--Biology

Vertebrate retinal development requires timely and precise fusion of the optic fissure. Failure of this event leads to congenital vision impairment in the form of coloboma. Recent studies have suggested hyaloid vasculature to be involved in OF fusion. In order to examine this link, we analyzed optic fissure fusion and hyaloid vasculogenesis in the zebrafish pax2a noi mutant line. We first determined that pax2a-/- embryos fail to accumulate F-actin in the optic fissure prior to basement membrane (BM) degradation. Furthermore, using 3D and live imaging we observed reduced OF hyaloid vascularization in pax2a-/- embryos. When examining the connection …


Siah-Mediated Ups Regulation Of The Development Of The Visual System In Zebrafish (Danio Rerio), Warlen Pereira Piedade Jan 2020

Siah-Mediated Ups Regulation Of The Development Of The Visual System In Zebrafish (Danio Rerio), Warlen Pereira Piedade

Theses and Dissertations--Biology

The eye is a complex organ responsible for vision that which formation depends on several intricate developmental steps. Vision for humans is responsible for the majority of its sensory interactions with the environment. Eye development can be divided into two critical stages: morphogenesis, which establishes the eye structure culminating with the fusion of the optic fissure, a transient cleft important for eye vascularization, and subsequently specification and differentiation of the retina to form every type of retinal neuronal cell, including photoreceptors, rods and cones. Developmental failure in either of these critical stages can lead to inherited congenital or age-related blinding …


Limb Development In Salamanders: An Evolutionary Perspective To The Tetrapod Limb, Sruthi Purushothaman Jan 2020

Limb Development In Salamanders: An Evolutionary Perspective To The Tetrapod Limb, Sruthi Purushothaman

Theses and Dissertations--Biology

Vertebrate limb is an ideal model to study growth, patterning and morphogenesis and the interplay between these processes. The developing limb bud is a three-dimensional structure and its outgrowth depends on the interaction between 2 important signaling centers: the Apical Ectodermal Ridge (AER) at the junction of the dorsal and ventral halves of the limb bud and the Zone of Polarizing activity (ZPA) in the posterior mesenchyme. These centers produce their respective key molecules and the close interplay between them specifies structures along the anterior-posterior (thumb to pinky), proximal-distal (shoulder to fingertips) and dorsal-ventral (knuckle to palm) axes.

Developmental biologists …


The Roles Of Polar Cell Extensions In Drosophila Micropyle Formation, Bradford Hull Jan 2020

The Roles Of Polar Cell Extensions In Drosophila Micropyle Formation, Bradford Hull

Theses and Dissertations--Biology

The Drosophila micropyle is a conserved formation utilized to allow sperm passage past the robust eggshell structure for fertilization. Micropyle formation follows a unique acellular tubulogenesis method where it is secreted and shaped by specialized follicle cells including the border cells and polar cells. In late oogenesis, the polar cells form extensions that are necessary to create the micropyle pore through which sperm enters. Previous work established that polar cell extension presence is required for micropyle pore formation. We investigated temporal requirements of extensions throughout chorion deposition and found extensions are required during the beginning and middle of choriogenesis, but …


The Effect Of Ph On Synaptic Transmission At The Neuromuscular Junction In Drosophila Melanogaster, Catherine Elizabeth Stanley Jan 2020

The Effect Of Ph On Synaptic Transmission At The Neuromuscular Junction In Drosophila Melanogaster, Catherine Elizabeth Stanley

Theses and Dissertations--Biology

Synaptic transmission is the main avenue of neuronal communication and can be affected by a multitude of factors, both intracellularly and extracellularly. The effects of pH changes on synaptic transmission have been studied for many years across many different models. Intracellular acidification at the presynaptic terminal is known to occur with increased neuronal activity and can also occur in pathological conditions. The effects of these pH alterations are therefore an important area of study. Here, intracellular acidification using either propionic acid or the ammonium chloride pre-pulse technique was examined for the effects on both spontaneous and evoked synaptic transmission at …


The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback Jan 2019

The Effects Of A Ketone Body On Synaptic Transmission, Alexandra Elizabeth Stanback

Theses and Dissertations--Biology

The ketogenic diet is commonly used to control epilepsy, especially in cases when medications cannot. The diet typically consists of high fat, low carb, and adequate protein and produces a metabolite called acetoacetate. Seizure activity is characterized by glutamate excitotoxicity and therefore glutamate regulation is a point of research for control of these disorders. Acetoacetate is heavily implicated as the primary molecule responsible for decreasing glutamate in the synapse; it is believed that acetoacetate interferes with the transport of glutamate into the synaptic vesicles. The effects on synaptic transmission at glutamatergic synapses was studied in relation to the ketogenic diet …


Bioinformatic And Experimental Analyses Of Axolotl Regeneration, Nour W. Al Haj Baddar Jan 2019

Bioinformatic And Experimental Analyses Of Axolotl Regeneration, Nour W. Al Haj Baddar

Theses and Dissertations--Biology

Salamanders have an extraordinary ability to regenerate appendages after loss or amputation, irrespective of age. My dissertation research explored the possibility that regenerative ability is associated with the evolution of novel, salamander-specific genes. I utilized transcriptional and genomic databases for the axolotl to discover previously unidentified genes, to the exclusion of other vertebrate taxa. Among the genes identified were multiple mmps (Matrix metalloproteases) and a jnk1/mapk8 (c-jun-N-terminal kinase) paralog. MMPs function in extracellular matrix remodeling (ECM) and tissue histolysis, processes that are essential for successful regeneration. Jjnk1/mapk8 plays a pivotal role in regulating transcription in response to cellular stress stimuli, …


Elucidating The Role Of Nidogen In The Fusion Of The Choroid Fissure, Nicholas W. Carrara Jan 2018

Elucidating The Role Of Nidogen In The Fusion Of The Choroid Fissure, Nicholas W. Carrara

Theses and Dissertations--Biology

In the developing embryo, the timely fusion of opposing epithelial sheets into one uniform layer denotes the completion of several developmental events. Failure of this epithelial sheet fusion event (ESF) within the choroid fissure (CF) is associated with the congenital disorder Ocular Coloboma, and is one of the leading causes of pediatric blindness. A requirement for a highly coordinated dismantling of the basement membrane (BM) to allow for fusion to occur is undoubted, however the underlying mechanisms of this process are poorly understood. Due to its BM crosslinking capabilities, I have hypothesized that the regulation of nidogen plays a crucial …


Jak/Stat Signaling Regulates Gametogenesis And Age-Related Reproductive Maintenance, Michelle Suzanne Giedt Jan 2018

Jak/Stat Signaling Regulates Gametogenesis And Age-Related Reproductive Maintenance, Michelle Suzanne Giedt

Theses and Dissertations--Biology

Cell signaling is central to integration of internal and external cues that regulate development and homeostasis. Most development is thought of as pre-adult, but limited developmental processes occur in adults. Gametogenesis incorporates elements of both these facets, with a distinct developmental plan for gamete synthesis which is regulated by integration of homeostatic inputs such as nutrient status, and environmental cues. Signaling pathways integrate and transduce information from these cues to evoke a response. A decline in homeostasis and subsequent cues occurs over time, in the case of reproductive tissues leading to a progressive loss of fertility. The Janus Kinase and …


Genetic Analysis Of Serf Gene Function In Drosophila Melanogaster And Its Contribution To A Fly Model Of Spinal Muscular Atrophy, Swagata Ghosh Jan 2017

Genetic Analysis Of Serf Gene Function In Drosophila Melanogaster And Its Contribution To A Fly Model Of Spinal Muscular Atrophy, Swagata Ghosh

Theses and Dissertations--Biology

The Serf gene is evolutionarily highly conserved but its biological function is not known in any organism. In human, SERF1/H4F5 was first identified as a modifier of the disease Spinal Muscular Atrophy (SMA). SMA is caused by mutations in the Survival Motor Neuron 1(SMN1) gene leading to diminished levels of the Smn protein. More than 90% of patients with the most severe form of SMA have deletions that remove SERF1 as well as mutaions within SMN1. Hence, loss of Serf activity is hypothesized to exacerbate SMA disease progression. The primary motivation of this thesis was to test …


Ionic Regulation Of Critical Cellular Processes In Non-Excitable Cells, Brandon M. Franklin Jan 2017

Ionic Regulation Of Critical Cellular Processes In Non-Excitable Cells, Brandon M. Franklin

Theses and Dissertations--Biology

There are long-standing hypotheses that endogenous ion currents act to control cell dynamics in development, wound healing and regeneration. However, the mechanisms employed by cells to detect the electric field (EF) and translate it into a discernable message to drive specific cell behaviors, such as migration, proliferation and differentiation, are not well understood. A better understanding of how cells are able to sense EFs and react to them is vital to understanding physiological mechanisms are involved in regeneration. Ion channel signaling provides a reasonable suspect for mediating these effects based on their documented involvement in proliferation, migration and differentiation.

To …


The Role Of Sox4 In Regulating Choroid Fissure Closure And Retinal Neurogenesis, Wen Wen Jan 2016

The Role Of Sox4 In Regulating Choroid Fissure Closure And Retinal Neurogenesis, Wen Wen

Theses and Dissertations--Biology

The development of the vertebrate eye is tightly controlled by precise genetic regulations. From a single ocular primordium to bilateral eyes with complex structures and cell types, it requires intensive proliferation and migration for cells in both the ectoderm and mesoderm to accomplish ocular morphogenesis, and during this process cell differentiation and interaction takes place to establish the complex composition of ocular cell types and cellular connections. Genetic defects can lead to severe abnormalities in eye morphogenesis and cell differentiation during ocular development. A tremendous amount of work has been done to identify both intrinsic and extrinsic factors that regulate …


Intrinsic And Extrinsic Regulation Of Pineal Melatonin Rhythms, Ye Li Jan 2016

Intrinsic And Extrinsic Regulation Of Pineal Melatonin Rhythms, Ye Li

Theses and Dissertations--Biology

Circadian rhythm is a biological rhythm with period of about 24 hours. Circadian rhythm is universal in phyla from bacteria to mammals and exists in different level from gene expression to behavior. Circadian system consists of three components: 1) a self-sustained oscillator; 2) an input pathway which can alter the phase of the oscillator; and 3) an output such as gene expression, enzyme activity, hormone production, heart rate, body temperature or locomotor activities. The way the oscillator regulates its outputs is complicated, in that on one hand usually the oscillator is not the only factor affecting the outputs, and on …


Characterization Of Somatically-Eliminated Genes During Development Of The Sea Lamprey (Petromyzon Marinus), Stephanie A. Bryant Jan 2016

Characterization Of Somatically-Eliminated Genes During Development Of The Sea Lamprey (Petromyzon Marinus), Stephanie A. Bryant

Theses and Dissertations--Biology

The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during early development that facilitate the elimination of ~20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a transcriptomic dataset derived from adult germline and the embryonic stages encompassing PGR. Validation studies identified 44 germline-specific genes and characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that several of these genes are differentially expressed during early embryogenesis …


Role Of Hairy-Related (Her) Genes During Vertebrate Retinal Development And Regeneration, Stephen G. Wilson Jan 2016

Role Of Hairy-Related (Her) Genes During Vertebrate Retinal Development And Regeneration, Stephen G. Wilson

Theses and Dissertations--Biology

Development and regeneration of the vertebrate eye are the result of complex interactions of regulatory networks and spatiotemporally controlled gene expression events. During embryonic retinal development, the coordination of cell signaling and transcriptional regulation allows for a relatively homogenous sheet of neuroepithelial cells to proliferate and differentiate in-to a multilayered, light sensitive retinal tissue. Following injury, the retinas of many cold-blooded vertebrates, such as the zebrafish, undergo a proliferative response that results not only in new retinal cells of the correct type in the correct location, but also functional integration of these cells and restoration of vision. In order for …


Dual Functions For Insulinoma-Associated 1 In Retinal Development, Marie A. Forbes-Osborne Jan 2015

Dual Functions For Insulinoma-Associated 1 In Retinal Development, Marie A. Forbes-Osborne

Theses and Dissertations--Biology

Proper visual system function requires tightly controlled proliferation of a pool of relatively homogeneous retinal progenitor cells, followed by the stepwise specification and differentiation of multiple distinct cell types. These retinal cells, both neuronal and glial, must be generated in the correct numbers, and the correct laminar location to permit the formation of synaptic connections between individual cell types. After synapses are made, constant signaling is required as part of normal retinal function, and to maintain cellular identity and connectivity. These processes rely on both extrinsic and intrinsic signaling, with regulation of gene expression by cascades of transcription factors having …


Beryllium Nitrate Supports Fibroblast Migration As An Essential Component Of Skin And Limb Regeneration In Axolotls, Adam Boyd Cook Jan 2015

Beryllium Nitrate Supports Fibroblast Migration As An Essential Component Of Skin And Limb Regeneration In Axolotls, Adam Boyd Cook

Theses and Dissertations--Biology

Tissue regeneration in salamanders is a robust process that is not easily interrupted or altered. Therefore, inhibiting regeneration provides a means to interrogate the underlying cellular and molecular mechanisms regulating this complex event. Here we show that application of a relatively low concentration of beryllium nitrate solution (100mM) causes a delay in skin regeneration and severely alters normal limb regeneration. We provide evidence showing a beryllium-induced reduction in dermal fibroblast migration in vivo and in vitro. We link this phenomenon to delayed regeneration of the skin and abnormal blastema formation resulting in limb patterning defects during regeneration. Though our …


Role Of Sox11 During Vertebrate Ocular Morphogenesis And Retinal Neurogenesis, Lakshmi Shashidharan Pillai Jan 2015

Role Of Sox11 During Vertebrate Ocular Morphogenesis And Retinal Neurogenesis, Lakshmi Shashidharan Pillai

Theses and Dissertations--Biology

Microphthalmia, anophthalmia, and coloboma (MAC) are distinct abnormalities demonstrating a continuum of developmental eye defects that contribute to 15-20% of blindness and severe vision deficiencies in children worldwide. The genetic etiology of MAC is large, complex and encompasses the whole developmental biology of the eye. Understanding how the eye develops will aid in identifying genes and developmental pathways involved in MAC. Although investigation of the genetic architecture of congenital anomalies is growing exponentially, much work remains to be accomplished to understand the complex, genetically heterogeneous congenital anomalies, which significantly impact childhood vision.

With an interest in elucidating the mechanisms that …


Targeted Knockout Of Beclin-1 Reveals An Essential Function In Ovary And Testis, Thomas R. Gawriluk Jan 2014

Targeted Knockout Of Beclin-1 Reveals An Essential Function In Ovary And Testis, Thomas R. Gawriluk

Theses and Dissertations--Biology

An estimated 12% of couples worldwide are infertile. The contributing factor is approximately equal between men and women with nearly 25% diagnosed as idiopathic. Despite the increasing numbers of couples seeking assistance from infertility clinics, few molecular mechanisms have been identified for treatment. Autophagy is an evolutionarily conserved cellular process for bulk degradation and recycling of cytosolic components through the lysosome to maintain homeostasis. Several studies have observed increased levels of autophagy during ovarian folliculogenesis and gonadal steroidogenesis; however, no genetic studies to determine the significance of autophagy exist.

To investigate the function of autophagy in the ovary and testis, …


Small Rna Expression During Programmed Rearragement Of A Vertebrate Genome, Joseph R. Herdy Iii Jan 2014

Small Rna Expression During Programmed Rearragement Of A Vertebrate Genome, Joseph R. Herdy Iii

Theses and Dissertations--Biology

The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during embryogenesis that results in the deletion of ~0.5 Gb of germline DNA from the somatic lineage. The underlying mechanism of these rearrangements remains largely unknown. miRNAs (microRNAs) and piRNAs (PIWI interacting RNAs) are two classes of small noncoding RNAs that play important roles in early vertebrate development, including differentiation of cell lineages, modulation of signaling pathways, and clearing of maternal transcripts. Here, I utilized next generation sequencing to determine the temporal expression of miRNAs, piRNAs, and other small noncoding RNAs during the first five days of lamprey …