Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Cancer Biology Faculty Papers

Male

Articles 1 - 1 of 1

Full-Text Articles in Cell and Developmental Biology

The Circadian Cryptochrome, Cry1, Is A Pro-Tumorigenic Factor That Rhythmically Modulates Dna Repair., Ayesha A Shafi, Chris M Mcnair, Jennifer J Mccann, Mohammed Alshalalfa, Anton Shostak, Tesa M Severson, Yanyun Zhu, Andre Bergman, Nicolas Gordon, Amy C Mandigo, Saswati N Chand, Peter Gallagher, Emanuela Dylgjeri, Talya S Laufer, Irina A Vasilevskaya, Matthew J Schiewer, Michael Brunner, Felix Y Feng, Wilbert Zwart, Karen E Knudsen Jan 2021

The Circadian Cryptochrome, Cry1, Is A Pro-Tumorigenic Factor That Rhythmically Modulates Dna Repair., Ayesha A Shafi, Chris M Mcnair, Jennifer J Mccann, Mohammed Alshalalfa, Anton Shostak, Tesa M Severson, Yanyun Zhu, Andre Bergman, Nicolas Gordon, Amy C Mandigo, Saswati N Chand, Peter Gallagher, Emanuela Dylgjeri, Talya S Laufer, Irina A Vasilevskaya, Matthew J Schiewer, Michael Brunner, Felix Y Feng, Wilbert Zwart, Karen E Knudsen

Department of Cancer Biology Faculty Papers

Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer. Functional studies and first-in-field mapping of the CRY1 cistrome and transcriptome reveal that CRY1 regulates DNA repair and the G2/M transition. DNA damage stabilizes CRY1 in cancer (in vitro, in vivo, and human tumors ex vivo), which proves critical for efficient DNA repair. Further mechanistic investigation shows that stabilized CRY1 temporally regulates expression of genes required …