Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Bioelectrics Publications

Electroporation

Engineering

Articles 1 - 18 of 18

Full-Text Articles in Cell and Developmental Biology

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov Jan 2022

Electroporation And Cell Killing By Milli- To Nanosecond Pulses And Avoiding Neuromuscular Stimulation In Cancer Ablation, Emily Gudvangen, Vitalii Kim, Vitalij Novickij, Federico Battista, Andrei G. Pakhomov

Bioelectrics Publications

Ablation therapies aim at eradication of tumors with minimal impact on surrounding healthy tissues. Conventional pulsed electric field (PEF) treatments cause pain and muscle contractions far beyond the ablation area. The ongoing quest is to identify PEF parameters efficient at ablation but not at stimulation. We measured electroporation and cell killing thresholds for 150 ns–1 ms PEF, uni- and bipolar, delivered in 10- to 300-pulse trains at up to 1 MHz rates. Monolayers of murine colon carcinoma cells exposed to PEF were stained with YO-PRO-1 dye to detect electroporation. In 2–4 h, dead cells were labeled with propidium. Electroporation and …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori Jan 2019

Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori

Bioelectrics Publications

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of …


Intratumoral Delivery Of Plasmid Il12 Via Electroporation Leads To Regression Of Injected And Noninjected Tumors In Merkel Cell Carcinoma, Shailender Bhatia, Natalie V. Longino, Natalie J. Miller, Rima Kulikauskas, Jayasri G. Iyer, Dafina Ibrani, Astrid Blom, David R. Byrd, Upendra Parvathaneni, Christopher Twitty, Jean S. Campbell, Mai H. Le, Sharron Gargosky, Robert H. Pierce, Richard Heller, Adil Daud, Paul Nghiem Jan 2019

Intratumoral Delivery Of Plasmid Il12 Via Electroporation Leads To Regression Of Injected And Noninjected Tumors In Merkel Cell Carcinoma, Shailender Bhatia, Natalie V. Longino, Natalie J. Miller, Rima Kulikauskas, Jayasri G. Iyer, Dafina Ibrani, Astrid Blom, David R. Byrd, Upendra Parvathaneni, Christopher Twitty, Jean S. Campbell, Mai H. Le, Sharron Gargosky, Robert H. Pierce, Richard Heller, Adil Daud, Paul Nghiem

Bioelectrics Publications

Purpose: Interleukin-12 (IL12) promotes adaptive type I immunity and has demonstrated antitumor efficacy, but systemic administration leads to severe adverse events (AE), including death. This pilot trial investigated safety, efficacy, and immunologic activity of intratumoral delivery of IL12 plasmid DNA (tavo) via in vivo electroporation (i.t.-tavo-EP) in patients with Merkel cell carcinoma (MCC), an aggressive virus-associated skin cancer.

Experimental Design: Fifteen patients with MCC with superficial injectable tumor(s) received i.t.-tavo-EP on days 1, 5, and 8 of each cycle. Patients with locoregional MCC (cohort A, N = 3) received one cycle before definitive surgery in week 4. …


Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar Jan 2018

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar

Bioelectrics Publications

Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding …


Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with …


Cell Electrosensitization Exists Only In Certain Electroporation Buffers, Janja Dermol, Olga N. Pakhomova, Andrei G. Pakhomov, Damijan Miklavčič Jan 2016

Cell Electrosensitization Exists Only In Certain Electroporation Buffers, Janja Dermol, Olga N. Pakhomova, Andrei G. Pakhomov, Damijan Miklavčič

Bioelectrics Publications

Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting …


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov Jan 2012

Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1–13 kV/cm) was assessed by oxidation of 2′, 7′-dichlorodihydrofluoresein (H2DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H2DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2′,7′dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat …


Electroporation-Induced Electrosensitization, Olga N. Pakhomova, Betsy W. Gregory, Vera A. Khorokhorina, Anglela M. Bowman, Shu Xiao, Andrei G. Pakhomov Feb 2011

Electroporation-Induced Electrosensitization, Olga N. Pakhomova, Betsy W. Gregory, Vera A. Khorokhorina, Anglela M. Bowman, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs). Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs.

METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-micros duration, 1.8 …


Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb Jan 2011

Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb

Bioelectrics Publications

We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and …


Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …


Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

A self-consistent model analysis of electroporation in biological cells has been carried out based on an improved energy model. The simple energy model used in the literature is somewhat incorrect and unphysical for a variety of reasons. Our model for the pore formation energy E(r) includes a dependence on pore population and density. It also allows for variable surface tension, incorporates the effects of finite conductivity on the electrostatic correction term, and is dynamic in nature. Self-consistent calculations, based on a coupled scheme involving the Smoluchowski equation and the improved energy model, are presented. It is shown that E(r) becomes …


Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach Jan 2002

Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), …


Theoretical Predictions Of Electromechanical Deformation Of Cells Subjected To High Voltages For Membrane Electroporation, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Theoretical Predictions Of Electromechanical Deformation Of Cells Subjected To High Voltages For Membrane Electroporation, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

An electromechanical analysis based on thin-shell theory is presented to analyze cell shape changes in response to external electric fields. This approach can be extended to include osmotic-pressure changes. Our calculations demonstrate that at large fields, the spherical cell geometry can be significantly modified, and even ellipsoidal forms would be inappropriate to account for the deformation. Values of the surface forces obtained from our calculations are in very good agreement with the 1–10 mN/m range for membrane rupture reported in the literature. The results, in keeping with reports in the literature, demonstrate that the final shape depends on membrane thickness. …


Self-Consistent Simulations Of Electroporation Dynamics In Biological Cells Subjected To Ultrashort Electrical Pulses, R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, H. P. Hjalmarson Jan 2001

Self-Consistent Simulations Of Electroporation Dynamics In Biological Cells Subjected To Ultrashort Electrical Pulses, R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

The temporal dynamics of electroporation of cells subjected to ultrashort voltage pulses are studied based on a coupled scheme involving the Laplace, Nernst-Plank, and Smoluchowski equations. A pore radius dependent energy barrier for ionic transport, accounts for cellular variations. It is shown that a finite time delay exists in pore formation, and leads to a transient overshoot of the transmembrane potential Vmem beyond 1.0 V. Pore resealing is shown to consist of an initial fast process, a 10−4s delay, followed by a much slower closing at a time constant of about 10 −1s. This establishes a …


Electroporation Dynamics In Biological Cells Subjected To Ultrafast Electrical Pulses: A Numerical Simulation Study, R. P. Joshi, K. H. Schoenbach Jan 2000

Electroporation Dynamics In Biological Cells Subjected To Ultrafast Electrical Pulses: A Numerical Simulation Study, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A model analysis of electroporation dynamics in biological cells has been carried out based on the Smoluchowski equation. Results of the cellular response to short, electric pulses are presented, taking account of the growth and resealing dynamics of transient aqueous pores. It is shown that the application of large voltages alone may not be sufficient to cause irreversible breakdown, if the time duration is too short. Failure to cause irreversible damage at small pulse widths could be attributed to the time inadequacy for pores to grow and expand beyond a critical threshold radius. In agreement with earlier studies, it is …