Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell and Developmental Biology

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Picosecond To Terahertz Perturbation Of Interfacial Water And Electropermeabilization Of Biological Membranes, P. Thomas Vernier, Zachary A. Levine, Ming-Chak Ho, Shu Xiao, Iurii Semenov, Andrei G. Pakhomov Jan 2015

Picosecond To Terahertz Perturbation Of Interfacial Water And Electropermeabilization Of Biological Membranes, P. Thomas Vernier, Zachary A. Levine, Ming-Chak Ho, Shu Xiao, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Non-thermal probing and stimulation with subnanosecond electric pulses and terahertz electromagnetic radiation may lead to new, minimally invasive diagnostic and therapeutic procedures and to methods for remote monitoring and analysis of biological systems, including plants, animals, and humans. To effectively engineer these still-emerging tools, we need an understanding of the biophysical mechanisms underlying the responses that have been reported to these novel stimuli. We show here that subnanosecond (≤500 ps) electric pulses induce action potentials in neurons and cause calcium transients in neuroblastoma-glioma hybrid cells, and we report complementary molecular dynamics simulations of phospholipid bilayers in electric fields in which …


Cancellation Of Cellular Responses To Nanoelectroporation By Reversing The Stimulus Polarity, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Betsy Gregory, Karl H. Schoenbach Jan 2014

Cancellation Of Cellular Responses To Nanoelectroporation By Reversing The Stimulus Polarity, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Betsy Gregory, Karl H. Schoenbach

Bioelectrics Publications

Nanoelectroporation of biomembranes is an effect of high-voltage, nanosecond-duration electric pulses (nsEP). It occurs both in the plasma membrane and inside the cell, and nanoporated membranes are distinguished by ion-selective and potential-sensitive permeability. Here we report a novel phenomenon of bioeffects cancellation that puts nsEP cardinally apart from the conventional electroporation and electrostimulation by milli- and microsecond pulses. We compared the effects of 60- and 300-ns monopolar, nearly rectangular nsEP on intracellular Ca2+mobilization and cell survival with those of bipolar 60 + 60 and 300 + 300 ns pulses. For diverse endpoints, exposure conditions, pulse numbers (1-60), and …


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Inhibition Of Voltage-Gated Na+ Current By Nanosecond Pulsed Electric Field (Nspef) Is Not Mediated By Na+ Influx Or Ca²+ Signaling, Vasyl Nesin, Andrei G. Pakhomov Jan 2012

Inhibition Of Voltage-Gated Na+ Current By Nanosecond Pulsed Electric Field (Nspef) Is Not Mediated By Na+ Influx Or Ca²+ Signaling, Vasyl Nesin, Andrei G. Pakhomov

Bioelectrics Publications

In earlier studies, we found that permeabilization of mammalian cells with nsPEF was accompanied by prolonged inhibition of voltage-gated (VG) currents through the plasma membrane. This study explored if the inhibition of VG Na+ current (INa) resulted from (i) reduction of the transmembrane Na+ gradient due to its influx via nsPEF-opened pores, and/or (ii) downregulation of the VG channels by a Ca2+ -dependent mechanism. We found that a single 300?ns electric pulse at 1.65.3?kV/cm triggered sustained Na+ influx in exposed NG108 cells and in primary chromaffin cells, as detected by increased fluorescence of a …


Dose-Dependent Thresholds Of 10-Ns Electric Pulse Induced Plasma Membrane Disruption And Cytotoxicity In Multiple Cell Lines, Bennett L. Ibey, Caleb C. Roth, Andrei G. Pakhomov, Joshua A. Bernhard, Gerald J. Wilmink, Olga N. Pakhomova Jan 2011

Dose-Dependent Thresholds Of 10-Ns Electric Pulse Induced Plasma Membrane Disruption And Cytotoxicity In Multiple Cell Lines, Bennett L. Ibey, Caleb C. Roth, Andrei G. Pakhomov, Joshua A. Bernhard, Gerald J. Wilmink, Olga N. Pakhomova

Bioelectrics Publications

In this study, we determined the LD50 (50% lethal dose) for cell death, and the ED50 (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LD50 varied substantially across the cell lines studied, increasing from 51 J/g for Jurkat to 1861 J/g for HeLa. PS externalized at doses equal or lower than that required for death in all cell lines ranging from 51 J/g in Jurkat, to 199 J/g in CHO-K1. Pr …