Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell and Developmental Biology

Enhanced Killing Effect Of Nanosecond Pulse Electric Fields On Panc1 And Jurkat Cell Lines In The Presence Of Tween 80, Gaurav Basu, Bhargava Subhash Kalluri, Ahmet Can Sabuncu, Christopher J. Osgood, Michael W. Stacey Jan 2012

Enhanced Killing Effect Of Nanosecond Pulse Electric Fields On Panc1 And Jurkat Cell Lines In The Presence Of Tween 80, Gaurav Basu, Bhargava Subhash Kalluri, Ahmet Can Sabuncu, Christopher J. Osgood, Michael W. Stacey

Bioelectrics Publications

We investigated the effects of nanosecond pulse electric fields (nsPEFs) on Jurkat and PANC1 cells, which are human carcinoma cell lines, in the presence of Tween 80 (T80) at a concentration of 0.18% and demonstarted an enhanced killing effect. We used two biological assays to determine cell viability after exposing cells to nsPEFs in the presence of T80 and observed a significant increase in the killing effect of nsPEFs. We did not see a toxic effect of T80 when cells were exposed to surfactant alone. However, we saw a synergistic effect when cells exposed to T80 were combined with the …


Electroporation-Induced Electrosensitization, Olga N. Pakhomova, Betsy W. Gregory, Vera A. Khorokhorina, Anglela M. Bowman, Shu Xiao, Andrei G. Pakhomov Feb 2011

Electroporation-Induced Electrosensitization, Olga N. Pakhomova, Betsy W. Gregory, Vera A. Khorokhorina, Anglela M. Bowman, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

BACKGROUND: Electroporation is a method of disrupting the integrity of cell membrane by electric pulses (EPs). Electrical modeling is widely employed to explain and study electroporation, but even most advanced models show limited predictive power. No studies have accounted for the biological consequences of electroporation as a factor that alters the cell's susceptibility to forthcoming EPs.

METHODOLOGY/PRINCIPAL FINDINGS: We focused first on the role of EP rate for membrane permeabilization and lethal effects in mammalian cells. The rate was varied from 0.001 to 2,000 Hz while keeping other parameters constant (2 to 3,750 pulses of 60-ns to 9-micros duration, 1.8 …


Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb Jan 2011

Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb

Bioelectrics Publications

We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and …


Fish Analysis On Spontaneously Arising Micronuclei In The Icf Syndrome, Michael W. Stacey, M. S. Bennett, M. Hulten Jan 1995

Fish Analysis On Spontaneously Arising Micronuclei In The Icf Syndrome, Michael W. Stacey, M. S. Bennett, M. Hulten

Bioelectrics Publications

The ICF syndrome is a rare disorder where patients show undercondensation of the heterochromatic blocks of chromosomes 1, 9, and 16 along with variable immunodeficiency. The undercondensation of the heterochromatic block appears to be restricted to a portion of PHA stimulated T cells. Patients with this syndrome also show an increase in micronuclei formation. We have used dual colour FISH to investigate the chromosomal content of these micronuclei in PHA stimulated peripheral blood cultures, an EBV transformed B cell line, and also micronuclei observed in vivo from peripheral blood smears. Chromosome 1 appears to be present in a higher proportion …