Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

An Apoptosis Targeted Stimulus With Nanosecond Pulsed Electric Fields (Nspefs) In E4 Squamous Cell Carcinoma, Wei Ren, Stephen J. Beebe Jan 2011

An Apoptosis Targeted Stimulus With Nanosecond Pulsed Electric Fields (Nspefs) In E4 Squamous Cell Carcinoma, Wei Ren, Stephen J. Beebe

Bioelectrics Publications

Stimuli directed towards activation of apoptosis mechanisms are an attractive approach to eliminate evasion of apoptosis, a ubiquitous cancer hallmark. In these in vitro studies, kinetics and electric field thresholds for several apoptosis characteristics are defined in E4 squamous carcinoma cells (SCC) exposed to ten 300 ns pulses with increasing electric fields. Cell death was [95% at the highest electric field and coincident with phosphatidylserine externalization, caspase and calpain activation in the presence and absence of cytochrome c release, decreases in Bid and mitochondria membrane potential (Δψm) without apparent changes reactive oxygen species levels or in Bcl2 and Bclxl levels. …


Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah Jan 2011

Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah

Bioelectrics Publications

The objectives of this communication were to fabricate pure samples of multi-walled carbon nanotubes (MWCNTs) and to determine their toxicity in tumor cell lines. MWCNTs were dispersed in a concentration of the surfactant T80 that was minimally toxic. Cell-type variation in toxicity to MWCNTs was observed but was not significantly different to unexposed controls. Additionally, we investigated the increased cell killing of the pancreatic cancer cell line PANC1 when exposed to ultrashort (nanosecond) pulsed electrical fields (nsPEF) in the presence of MWCNTs as a potential form of cancer therapy. We hypothesized that the unique electronic properties of MWCNTs disrupt cell …