Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Enhanced Electric Pulse Technology For The Ablation Of Pancreatic Cancer, Siqi Guo, Niculina I. Burcus, Chelsea M. Edelblute, James Hornef, Chunqi Jiang, Karl Schoenbach, Richard Heller, Stephen J. Beebe Jan 2018

Enhanced Electric Pulse Technology For The Ablation Of Pancreatic Cancer, Siqi Guo, Niculina I. Burcus, Chelsea M. Edelblute, James Hornef, Chunqi Jiang, Karl Schoenbach, Richard Heller, Stephen J. Beebe

Bioelectrics Publications

Electric pulse based technology has been developed and studied as a non-thermal ablation method for local control of pancreatic cancer. Irreversible electroporation (IRE) has shown a significant survival benefit for local advanced pancreatic cancer in clinical trials. However, incomplete ablation with local recurrence and major complications limit the potential of this new technology. We have developed an integrated moderate heating electric pulse delivery system which consists of controllable tumor heating, multi-parameter monitoring and electric pulse delivery. The impedance of tumor is greatly decreased after moderate heating at 42°C for 1–2 min, which does not cause any cell death. Moderate heating …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …