Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

Nanosecond Electric Pulses Differentially Affect Inward And Outward Currents In Patch Clamped Adrenal Chromaffin Cells, Lisha Yang, Gale L. Craviso, P. Thomas Vernier, Indira Chatterjee, Normand Leblanc Jul 2017

Nanosecond Electric Pulses Differentially Affect Inward And Outward Currents In Patch Clamped Adrenal Chromaffin Cells, Lisha Yang, Gale L. Craviso, P. Thomas Vernier, Indira Chatterjee, Normand Leblanc

Bioelectrics Publications

This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V) relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa), whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa), a Ca2+-activated K+ current (IK(Ca)), and a sustained voltage-dependent delayed rectifier K+ current (IKV). A constant-voltage step protocol was next used to monitor peak inward and late …


Anti-Proliferative Role Of Recombinant Lethal Toxin Of Bacillus Anthracis On Primary Mammary Ductal Carcinoma Cells Revealing Its Therapeutic Potential, Rekha Khandia, Bramhadev Pattnaik, Katherikamem Rajukumar, Atul Pateriya, Sandeep Bhatia, Harshad Murugkar, Anil Prakash, Hare Krishna Pradhan, Kildeep Dhama, Ashol Munjal, Sunil K. Joshi Jan 2017

Anti-Proliferative Role Of Recombinant Lethal Toxin Of Bacillus Anthracis On Primary Mammary Ductal Carcinoma Cells Revealing Its Therapeutic Potential, Rekha Khandia, Bramhadev Pattnaik, Katherikamem Rajukumar, Atul Pateriya, Sandeep Bhatia, Harshad Murugkar, Anil Prakash, Hare Krishna Pradhan, Kildeep Dhama, Ashol Munjal, Sunil K. Joshi

Bioelectrics Publications

Bacillus anthracis secretes three secretary proteins; lethal factor (LF), protective antigen (PA) and edema factor (EF). The LF has ability to check proliferation of mammary tumors, chiefly depending on mitogen activated protein kinase (MAPK) signaling pathway. Evaluation of therapeutic potential of recombinant LF (rLF), recombinant PA (rPA) and lethal toxin (rLF + rPA = LeTx) on the primary mammary ductal carcinoma cells revealed significant (p < 0.01) reduction in proliferation of tumor cells with mean inhibition indices of 28.0 ±1.37% and 19.6 ± 1.47% respectively. However, treatment with rPA alone had no significant anti-proliferative effect as evident by low mean inhibition index of 3.4 ± 3.87%. The higher inhibition index observed for rLF alone as compared to LeTx is contrary to the existing knowledge on LF, which explains the requirement of PA dependent endocytosis for its enzymatic activity. Therefore, the plausible existence of PA independent mode of action of LF including direct receptor mediated endocytosis or modulation of signal transduction cascade via unknown means is hypothesized. In silico protein docking analysis of other cellular receptors for any plausibility to play the role of receptor for LF revealed c-Met receptor showing strongest affinity for LF (H bond = 19; Free energy = …


Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian Jan 2017

Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian

Bioelectrics Publications

This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01 M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to …