Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Cell and Developmental Biology

Mechanisms Of Nanosecond Pulsed Electric Field (Nspef)-Induced Cell Death In Cells And Tumors, Stephen J. Beebe Jan 2015

Mechanisms Of Nanosecond Pulsed Electric Field (Nspef)-Induced Cell Death In Cells And Tumors, Stephen J. Beebe

Bioelectrics Publications

The evolution of pulse power technology from high power physics to biology and medicine places nanosecond pulsed electric fields (nsPEFs) in positions for in vitro and in vivo applications as non-ligand agonists that not only bypass plasma membrane receptors for induction of intracellular signaling pathways, but also bypass intracellular oncogenic impasses to induce cell death by regulated mechanisms. Based on work reviewed here, a likely scenario for cell and tumor demise includes nsPEF-induced permeabilization of the plasma membrane, Ca2+ influx, dissipation of the mitochondrial membrane potential, which is likely due to events beyond permeabilization of the inner mitochondrial membrane, cytochrome …


Cell Responses Without Receptors And Ligands, Using Nanosecond Pulsed Electric Fields (Nspefs), Stephen J. Beebe Jan 2013

Cell Responses Without Receptors And Ligands, Using Nanosecond Pulsed Electric Fields (Nspefs), Stephen J. Beebe

Bioelectrics Publications

No abstract provided.


Nanosecond Pulsed Electric Field (Nspef) Ablation As An Alternative Or Adjunct To Surgery For Treatment Of Cancer, Ru Chen, Xinhua Chen, Stephen J. Beebe Jan 2013

Nanosecond Pulsed Electric Field (Nspef) Ablation As An Alternative Or Adjunct To Surgery For Treatment Of Cancer, Ru Chen, Xinhua Chen, Stephen J. Beebe

Bioelectrics Publications

Surgery as resection or transplantation remains a fundamental means for cancer treatment and often offers an opportunity for a cure. However, surgery is not always possible because of tumor proximity to blood vessels or ducts or when a patient is not healthy enough to undergo surgery. Application of nanosecond pulsed electric fields (nsPEFs) is a new approach to treat cancer using pulse power technology that was originally designed for military purposes. This novel approach deposits extremely short pulses of high power, low energy electric fields into malignant tissues using electrodes to encompass tumors. Pre-clinical studies show that treatments are effective …


Probing Nanoparticle Interactions In Cell Culture Media, Ahmet C. Sabuncu, Janna Grubbs, Shizhi Qian, Tarek M. Abdel-Fattah, Michael W. Stacey, Ali Beskok Jan 2012

Probing Nanoparticle Interactions In Cell Culture Media, Ahmet C. Sabuncu, Janna Grubbs, Shizhi Qian, Tarek M. Abdel-Fattah, Michael W. Stacey, Ali Beskok

Bioelectrics Publications

Nanoparticle research is often performed in vitro with little emphasis on the potential role of cell culture medium. In this study, gold nanoparticle interactions with cell culture medium and two cancer cell lines (human T-cell leukemia Jurkat and human pancreatic carcinoma PANC1) were investigated. Gold nanoparticles of 10, 25, 50, and 100 nm in diameter at fixed mass concentration were tested. Size distributions and zeta potentials of gold nanoparticles suspended in deionized (DI) water and Dulbecco's Modified Eagle's Media (DMEM) supplemented with fetal calf serum (FCS) were measured using dynamic light scattering (DLS) technique. In DI water, particle size distributions …


Dose-Dependent Thresholds Of 10-Ns Electric Pulse Induced Plasma Membrane Disruption And Cytotoxicity In Multiple Cell Lines, Bennett L. Ibey, Caleb C. Roth, Andrei G. Pakhomov, Joshua A. Bernhard, Gerald J. Wilmink, Olga N. Pakhomova Jan 2011

Dose-Dependent Thresholds Of 10-Ns Electric Pulse Induced Plasma Membrane Disruption And Cytotoxicity In Multiple Cell Lines, Bennett L. Ibey, Caleb C. Roth, Andrei G. Pakhomov, Joshua A. Bernhard, Gerald J. Wilmink, Olga N. Pakhomova

Bioelectrics Publications

In this study, we determined the LD50 (50% lethal dose) for cell death, and the ED50 (50% of cell population staining positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell lines (HeLa, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LD50 varied substantially across the cell lines studied, increasing from 51 J/g for Jurkat to 1861 J/g for HeLa. PS externalized at doses equal or lower than that required for death in all cell lines ranging from 51 J/g in Jurkat, to 199 J/g in CHO-K1. Pr …


Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah Jan 2011

Nanosecond Pulse Electrical Fields Used In Conjunction With Multi-Wall Carbon Nanotubes As A Potential Tumor Treatment, Michael W. Stacey, Christopher Osgood, Bhargava Subhash Kalluri, Wei Cao, Hani Elsayed-Ali, Tarek Abdel-Fattah

Bioelectrics Publications

The objectives of this communication were to fabricate pure samples of multi-walled carbon nanotubes (MWCNTs) and to determine their toxicity in tumor cell lines. MWCNTs were dispersed in a concentration of the surfactant T80 that was minimally toxic. Cell-type variation in toxicity to MWCNTs was observed but was not significantly different to unexposed controls. Additionally, we investigated the increased cell killing of the pancreatic cancer cell line PANC1 when exposed to ultrashort (nanosecond) pulsed electrical fields (nsPEF) in the presence of MWCNTs as a potential form of cancer therapy. We hypothesized that the unique electronic properties of MWCNTs disrupt cell …


Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb Jan 2011

Nanosecond Pulsed Electric Field Induced Cytoskeleton, Nuclear Membrane And Telomere Damage Adversely Impact Cell Survival, Michael W. Stacey, P. Fox, S. Buescher, Juergen F. Kolb

Bioelectrics Publications

We investigated the effects of nanosecond pulsed electric fields (nsPEF) on three human cell lines and demonstrated cell shrinkage, breakdown of the cytoskeleton, nuclear membrane and chromosomal telomere damage. There was a differential response between cell types coinciding with cell survival. Jurkat cells showed cytoskeleton, nuclear membrane and telomere damage that severely impacted cell survival compared to two adherent cell lines. Interestingly, disruption of the actin cytoskeleton in adherent cells prior to nsPEF exposure significantly reduced cell survival. We conclude that nsPEF applications are able to induce damage to the cytoskeleton and nuclear membrane. Telomere sequences, regions that tether and …


Bioelectric Effects Of Intense Nanosecond Pulses, Karl H. Schoenbach, Barbara Y. Hargrave, Ravindra P. Joshi, Juergen F. Kolb, Richard Nuccitelli, Christopher J. Osgood, Andrei G. Pakhomov, Michael W. Stacey, James R. Swanson, Jody A. White, Shu Xiao, Jue Zhang, Stephen J. Beebe, Peter F. Blackmore, E. Stephen Buescher Jan 2007

Bioelectric Effects Of Intense Nanosecond Pulses, Karl H. Schoenbach, Barbara Y. Hargrave, Ravindra P. Joshi, Juergen F. Kolb, Richard Nuccitelli, Christopher J. Osgood, Andrei G. Pakhomov, Michael W. Stacey, James R. Swanson, Jody A. White, Shu Xiao, Jue Zhang, Stephen J. Beebe, Peter F. Blackmore, E. Stephen Buescher

Bioelectrics Publications

Electrical models for biological cells predict that reducing the duration of applied electrical pulses to values below the charging time of the outer cell membrane (which is on the order of 100 ns for mammalian cells) causes a strong increase in the probability of electric field interactions with intracellular structures due to displacement currents. For electric field amplitudes exceeding MV/m, such pulses are also expected to allow access to the cell interior through conduction currents flowing through the permeabilized plasma membrane. In both cases, limiting the duration of the electrical pulses to nanoseconds ensures only nonthermal interactions of the electric …


Nanosecond Pulsed Electric Fields: A New Stimulus To Activate Intracellular Signaling, Stephen J. Beebe, Karl H. Schoenbach Jan 2005

Nanosecond Pulsed Electric Fields: A New Stimulus To Activate Intracellular Signaling, Stephen J. Beebe, Karl H. Schoenbach

Bioelectrics Publications

When new technologies are introduced into the scientific community, controversy is expected and both excitement and disappointment enrich the lives of those who initiate the new ideas. It becomes the mission of the “inventors” to embrace the burden of proof to establish their ideas and convince the skeptics and disbelievers who will undoubtedly temper their enthusiasm and test their patience. While open mindedness is generally a scientific motto, those who review patents, manuscripts, and grants do not always readily practice it, even when the evidence is convincingly presented; old ideas and concepts often die hard. So it has been and …