Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

City University of New York (CUNY)

2021

Articles 1 - 24 of 24

Full-Text Articles in Cell and Developmental Biology

Oligomerization Of Mutant P53 R273h Is Not Required For Gain-Of-Function Chromatin Associated Activities, George K. Annor, Nour Elshabassy, Devon Lundine, Don-Gerard Conde, Gu Xiao, Viola Ellison, Jill Bargonetti Nov 2021

Oligomerization Of Mutant P53 R273h Is Not Required For Gain-Of-Function Chromatin Associated Activities, George K. Annor, Nour Elshabassy, Devon Lundine, Don-Gerard Conde, Gu Xiao, Viola Ellison, Jill Bargonetti

Publications and Research

The TP53 gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the C-terminal oligomerization domain (OD). These types of mutations are found in patients with the rare inherited cancer predisposition disorder called Li-Fraumeni syndrome. We previously found that mutant p53 (mtp53) R273H associates with replicating DNA and promotes the chromatin association of replication-associated proteins mini-chromosome maintenance 2 (MCM2), and poly ADP-ribose polymerase 1(PARP1). Herein, we created dual mutants in order to test if the oligomerization state of mtp53 R273H played a role in chromatin binding oncogenic gain-of-function (GOF) activities. …


Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo Oct 2021

Cryo-Em Structure Of Mechanosensitive Channel Ynai Using Sma2000: Challenges And Opportunities, Claudio Catalano, Danya Ben-Hail, Weihua Qiu, Paul Blount, Amedee Des Georges, Youzhong Guo

Publications and Research

Mechanosensitive channels respond to mechanical forces exerted on the cell membrane and play vital roles in regulating the chemical equilibrium within cells and their environment. Highresolution structural information is required to understand the gating mechanisms of mechanosensitive channels. Protein-lipid interactions are essential for the structural and functional integrity of mechanosensitive channels, but detergents cannot maintain the crucial native lipid environment for purified mechanosensitive channels. Recently, detergent-free systems have emerged as alternatives for membrane protein structural biology. This report shows that while membrane-active polymer, SMA2000, could retain some native cell membrane lipids on the transmembrane domain of the mechanosensitive-like YnaI channel, …


Regulatory Non-Coding Rnas Modulate Transcriptional Activation During B Cell Development, Mary Attaway, Tzippora Chwat-Edelstein, Bao Q. Vuong Oct 2021

Regulatory Non-Coding Rnas Modulate Transcriptional Activation During B Cell Development, Mary Attaway, Tzippora Chwat-Edelstein, Bao Q. Vuong

Publications and Research

B cells play a significant role in the adaptive immune response by secreting immunoglobulins that can recognize and neutralize foreign antigens. They develop from hematopoietic stem cells, which also give rise to other types of blood cells, such as monocytes, neutrophils, and T cells, wherein specific transcriptional programs define the commitment and subsequent development of these different cell lineages. A number of transcription factors, such as PU.1, E2A, Pax5, and FOXO1, drive B cell development. Mounting evidence demonstrates that non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), modulate the expression of these transcription factors directly by binding …


Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin Sep 2021

Aurora Kinase A Inhibition Reverses The Warburg Effect And Elicits Unique Metabolic Vulnerabilities In Glioblastoma, Trang T. T. Nguyen, Enyuan Shang, Chang Shu, Sungsoo Kim, Angeliki Mela, Nelson Humala, Aayushi Mahajan, Hee Won Yang, Hasan Orhan Akman, Catarina M. Quinzii, Guoan Zhang, Mike-Andrew Westhoff, Georg Karpel-Massler, Jeffrey N. Bruce, Peter Canoll, Markus D. Siegelin

Publications and Research

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was …


Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi Sep 2021

Synthesis, Characterization And Applications Of Peptide-Coated Nanoparticles, Mina Sadat Poursharifi

Dissertations, Theses, and Capstone Projects

Ovarian Cancer (OC) is the most lethal female malignancy worldwide, mainly due to its high recurrence rate and poor diagnosis. Most patients present with late stage of the disease, and less than 25% of patients survive the five years mark. Nanotherapy provides significant and unique benefits for drug efficacy, as nanoparticles (NPs) can increase the solubility, bioavailability, and permeability of many potent drugs. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successful biodegradable polymers used in NPs formulations, mainly due to its biocompatibility and biodegradability. Polyethylene glycol (PEG) is one of the most commonly used moieties to prolong the NPs …


The Role Of Tbx2 In Germ Layer Suppression And Dorsoventral Patterning During Early Vertebrate Development, Shoshana Reich Sep 2021

The Role Of Tbx2 In Germ Layer Suppression And Dorsoventral Patterning During Early Vertebrate Development, Shoshana Reich

Dissertations, Theses, and Capstone Projects

The differentiation of the three primary germ layers is precisely regulated by inductive cues, the intracellular networks through which these signals are transduced, and a broad array of nuclear proteins, such as transcription factors and epigenetic modifiers. Precise regulation of these various factors is crucial to proper development. Members of the T-box family of DNA-binding proteins play a prominent role in the differentiation of the three primary germ layers. VegT, Brachyury, and Eomesodermin function as transcriptional activators, are expressed in the presumptive mesendoderm and, in addition to directly activating the transcription of endoderm- and mesoderm-specific genes, serve variously as regulators …


Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen Sep 2021

Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen

Dissertations, Theses, and Capstone Projects

In the vertebrate retina, cone photoreceptors are crucial for high acuity color vision. Several retinal diseases lead to loss of cones and there is a need to identify the normal developmental genesis of these cells to inform the development of stem cell-based therapies. Cone genesis has previously been shown to be repressed by Notch signaling, however, the mechanism by which Notch signaling controls cone fate determination is still unclear. It has been identified that cone photoreceptors are formed from multipotent retinal progenitor cells (RPCs) that first generate genetically-defined, restricted RPCs with limited mitotic and fate potential to preferentially form cones …


Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine Sep 2021

Study Of The Gain-Of-Function Mutant P53 And Parp1 In Triple-Negative Breast Cancer, Devon Lundine

Dissertations, Theses, and Capstone Projects

Cancer cells often lose expression of the p53 protein or express mutant forms of p53. Some of these mutant p53 proteins, called gain-of-function mutant p53, have gained oncogenic functions. Previously, our group observed mutant p53 R273H interacts with replicating DNA and upregulates the chromatin localization of several DNA replication factors including PCNA, MCM2-7, and PARP1 (termed the mtp53-PARP-MCM axis). In this thesis, we explore the contribution of mutant p53 and PARP1 in castration-resistant prostate cancer (mutant p53 P223L and V274F) and triple-negative breast cancer (mutant p53 R273H). In the castration-resistant prostate cancer cell line DU145, we examine two mutant p53 …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Threshold Concentration And Random Collision Determine The Growth Of The Huntingtin Inclusion From A Stable Core, Sen Pei, Theresa C. Swayne, Jeffrey F. Morris, Lesley Emtage Aug 2021

Threshold Concentration And Random Collision Determine The Growth Of The Huntingtin Inclusion From A Stable Core, Sen Pei, Theresa C. Swayne, Jeffrey F. Morris, Lesley Emtage

Publications and Research

The processes underlying formation and growth of unfolded protein inclusions are relevant to neurodegenerative diseases but poorly characterized in living cells. In S. cerevisiae, inclusions formed by mutant huntingtin (mHtt) have some characteristics of biomolecular condensates but the physical nature and growth mechanisms of inclusion bodies remain unclear. We have probed the relationship between concentration and inclusion growth in vivo and find that growth of mHtt inclusions in living cells is triggered at a cytoplasmic threshold concentration, while reduction in cytoplasmic mHtt causes inclusions to shrink. The growth rate is consistent with incorporation of new material through collision and coalescence. …


Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis Aug 2021

Decoding The Roles Of Astrocytes And Hedgehog Signaling In Medulloblastoma, Terence Teixeira Duarte, Silvia Aparecida Teixeira, Luis Gonzalez-Reyes, Rui Manuel Reis

Publications and Research

The molecular evolution of medulloblastoma is more complex than previously imagined, as emerging evidence suggests that multiple interactions between the tumor cells and components of the tumor microenvironment (TME) are important for tumor promotion and progression. The identification of several molecular networks within the TME, which interact with tumoral cells, has provided new clues to understand the tumorigenic roles of many TME components as well as potential therapeutic targets. In this review, we discuss the most recent studies regarding the roles of astrocytes in supporting sonic hedgehog (SHH) subgroup medulloblastoma (MB) and provide an overview of MB progression through SHH …


Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky Aug 2021

Anatomy And Physiology Preparatory Course Textbook (2nd Edition), Carlos Liachovitzky

Open Educational Resources

The goal of this preparatory textbook is to give students a chance to become familiar with some terms and some basic concepts they will find later on in the Anatomy and Physiology course, especially during the first few weeks of the course.

Organization and functioning of the human organism are generally presented starting from the simplest building blocks, and then moving into levels of increasing complexity. This textbook follows the same presentation. It begins introducing the concept of homeostasis, then covers the chemical level, and later on a basic introduction to cellular level, organ level, and organ system level. This …


Bcr Affinity Influences T-B Interactions And B Cell Development In Secondary Lymphoid Organs, Alec J. Wishnie, Tzippora Chwat-Edelstein, Mary Attaway, Bao Q. Vuong Jul 2021

Bcr Affinity Influences T-B Interactions And B Cell Development In Secondary Lymphoid Organs, Alec J. Wishnie, Tzippora Chwat-Edelstein, Mary Attaway, Bao Q. Vuong

Publications and Research

B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre- Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B …


Notch Signaling Represses Cone Photoreceptor Formation Through The Regulation Of Retinal Progenitor Cell States, Xueqing Chen, Mark M. Emerson Jul 2021

Notch Signaling Represses Cone Photoreceptor Formation Through The Regulation Of Retinal Progenitor Cell States, Xueqing Chen, Mark M. Emerson

Publications and Research

Notch signaling is required to repress the formation of vertebrate cone photoreceptors and to maintain the proliferative potential of multipotent retinal progenitor cells. However, the mechanism by which Notch signaling controls these processes is unknown. Recently, restricted retinal progenitor cells with limited proliferation capacity and that preferentially generate cone photoreceptors have been identified. Thus, there are several potential steps during cone genesis that Notch signaling could act. Here we use cell type specific cis-regulatory elements to localize the primary role of Notch signaling in cone genesis to the formation of restricted retinal progenitor cells from multipotent retinal progenitor cells. Localized …


The Effect Of Fluid Flow Shear Stress And Substrate Stiffness On Yes-Associated Protein (Yap) Activity And Osteogenesis In Murine Osteosarcoma Cells, Thomas R. Coughlin, Ali Sana, Kevin Voss, Abhilash Gadi, Upal Basu-Roy, Caroline M. Curtin, Alka Mansukhani, Oran D. Kennedy Jun 2021

The Effect Of Fluid Flow Shear Stress And Substrate Stiffness On Yes-Associated Protein (Yap) Activity And Osteogenesis In Murine Osteosarcoma Cells, Thomas R. Coughlin, Ali Sana, Kevin Voss, Abhilash Gadi, Upal Basu-Roy, Caroline M. Curtin, Alka Mansukhani, Oran D. Kennedy

Publications and Research

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/ physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in …


Evolution And Development Of The Seed Coat In Gymnosperms, Cecilia Zumajo Jun 2021

Evolution And Development Of The Seed Coat In Gymnosperms, Cecilia Zumajo

Dissertations, Theses, and Capstone Projects

Gymnosperms and angiosperms are the most abundant plant lineages on earth and constitute a turning point in the evolution of plants because they are at the origin of the seed, a key morphological and developmental novelty in the evolution of land plant. Although the morphological variation of the seed, across seed plants, may on its own, explain the complexity of this structure, the origin, and evolution are even more, the understanding of these topics is still under discussion. Evidence shows that previous studies have often lacked the component of gene expression, particularly in species that are not model species. The …


Molecular Mechanisms Underlying Cell Fate Choice Within Specific Retinal Lineages, Estie Schick Jun 2021

Molecular Mechanisms Underlying Cell Fate Choice Within Specific Retinal Lineages, Estie Schick

Dissertations, Theses, and Capstone Projects

During development, retinal progenitor cells (RPCs) divide to form all of the cell types that make up the retina. Multipotent RPCs are competent to generate all retinal cell types, while restricted RPCs form specific lineages of cells. In particular, one genetically-defined RPC type preferentially gives rise to cone photoreceptors and horizontal cells. Many of the mechanisms that are responsible for directing cell fate choice within this lineage are unknown. This thesis largely focuses on examining the development of specific cell types and subtypes from restricted RPCs and on investigating the gene regulatory events that underlie cone photoreceptor and horizontal cell …


Heparan Sulfate Proteoglycan Glypican‑1 And Pecam‑1 Cooperate In Shear‑Induced Endothelial Nitric Oxide Production, Anne Marie W. Bartosch, Rick Mathews, Marwa M. Mahmoud, Limary M. Cancel, Zahin S. Haq, John M. Tarbell May 2021

Heparan Sulfate Proteoglycan Glypican‑1 And Pecam‑1 Cooperate In Shear‑Induced Endothelial Nitric Oxide Production, Anne Marie W. Bartosch, Rick Mathews, Marwa M. Mahmoud, Limary M. Cancel, Zahin S. Haq, John M. Tarbell

Publications and Research

This study aimed to clarify the role of glypican-1 and PECAM-1 in shear-induced nitric oxide production in endothelial cells. Atomic force microscopy pulling was used to apply force to glypican-1 and PECAM-1 on the surface of human umbilical vein endothelial cells and nitric oxide was measured using a fluorescent reporter dye. Glypican-1 pulling for 30 min stimulated nitric oxide production while PECAM-1 pulling did not. However, PECAM-1 downstream activation was necessary for the glypican-1 force-induced response. Glypican-1 knockout mice exhibited impaired flow-induced phosphorylation of eNOS without changes to PECAM-1 expression. A cooperation mechanism for the mechanotransduction of fluid shear stress …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …


Insights Into Leptopilina Spp. Immune-Suppressive Strategies Using Mixed-Omics And Molecular Approaches, Brian Wey Feb 2021

Insights Into Leptopilina Spp. Immune-Suppressive Strategies Using Mixed-Omics And Molecular Approaches, Brian Wey

Dissertations, Theses, and Capstone Projects

Host-parasite interactions influence the biology of each over the course of evolution. Parasite success allows for the passage of potent virulence strategies from generation to generation. Host success passes stronger immunity and resistance strategies to the following generations as well. Only by studying both partners within their natural contexts can we begin to understand the relationship between the two and how immune mechanisms and virulence strategies interact as a molecular arms race.

In this work, we focus on a natural host-parasite pair, the Drosophila-Leptopilina model. Leptopilina species are parasites of several fruit fly species, including Drosophila melanogaster. This model …


Development And Maintenance Of The Thymic Epithelial Microenvironment, Shami Chakrabarti Feb 2021

Development And Maintenance Of The Thymic Epithelial Microenvironment, Shami Chakrabarti

Dissertations, Theses, and Capstone Projects

The thymus plays a critical role in adaptive immunity by providing a suitable microenvironment for developing and selecting the functional self-tolerant T-cell population. Thymic epithelial cells play an essential role in the development of a naïve, self-tolerant T-cell population. Paradoxically thymus undergoes acute age-related involution, which in turn causes loss of functional T-cell populations. Involution reduces the functionality of the thymus markedly, but the thymus can still develop self-tolerant naïve T-cells. It is crucial to understand how the thymic microenvironment is maintained to provide a suitable T-cell population for life. It has been previously demonstrated that the thymic epithelial homeostasis …


Anti-Cancer Effects By Interleukin 24, Xuelin Zhong Feb 2021

Anti-Cancer Effects By Interleukin 24, Xuelin Zhong

Dissertations, Theses, and Capstone Projects

Cancers develop as some cells acquire the ability, either by exogenous stimulation or by spontaneous mutation, to keep growing despite normal restraints. Up-regulating translation of oncogenes involved in cell proliferation and tumor development and down-regulating translation of tumor-suppressors that normally suppress tumor development are two most common mechanisms by which cancers develop. Therefore, it is crucial to study how these proteins get either up-regulated or down-regulated at translational level.

The eukaryotic translation initiation factor, which is composed of subunits such as eIF4A, eIF4G and eIF4E, is one of the key factors that contribute to efficient translation initiation. Interleukin 24 (IL-24), …


Cell Cycle Progression Effects Of Albumin, Sharmeen Uddin Feb 2021

Cell Cycle Progression Effects Of Albumin, Sharmeen Uddin

Dissertations, Theses, and Capstone Projects

Progression through G1 phase of the cell cycle is controlled largely by growth factors in early G1 and by nutrients in late G1 indicating sufficient raw material for cell division. We previously mapped a late G1 cell cycle checkpoint for lipids upstream from a mammalian target of rapamycin complex 1 (mTORC1)-mediated checkpoint and downstream from a mid-G1 checkpoint known as the Restriction point. We therefore investigated a role for lipids in progression through late G1 into S-phase. Quiescent BJ-hTERT human fibroblasts primed back into G1 with FBS treatment, were treated with a mixture of …


A New Mathematical Theory For The Dynamics Of Large Tumor Populations, A Potential Mechanism For Cancer Dormancy & Recurrence And Experimental Observation Of Melanoma Progression In Zebrafish, Adeyinka A. Lesi Jan 2021

A New Mathematical Theory For The Dynamics Of Large Tumor Populations, A Potential Mechanism For Cancer Dormancy & Recurrence And Experimental Observation Of Melanoma Progression In Zebrafish, Adeyinka A. Lesi

Dissertations and Theses

Cancer, a family of over a hundred disease varieties, results in 600,000 deaths in the U.S. alone. Yet, improvements in imaging technology to detect disease earlier, pharmaceutical developments to shrink or eliminate tumors, and modeling of biological interactions to guide treatment have prevented millions of deaths. Cancer patients with initially similar disease can experience vastly different outcomes, including sustained recovery, refractory disease or, remarkably, recurrence years after apparently successful treatment. The current understanding of such recurrences is that they depend on the random occurrence of critical mutations. Clearly, these biological changes appear to be sufficient for recurrence, but are they …