Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell and Developmental Biology

Multimodal Spectral Imaging Of Cells Using A Transmission Diffraction Grating On A Light Microscope, Dragan Isailovic, Yang Xu, Tyler Copus, Suraj Saraswat, Surya M. Nauli Jun 2011

Multimodal Spectral Imaging Of Cells Using A Transmission Diffraction Grating On A Light Microscope, Dragan Isailovic, Yang Xu, Tyler Copus, Suraj Saraswat, Surya M. Nauli

Pharmacy Faculty Articles and Research

A multimodal methodology for spectral imaging of cells is presented. The spectral imaging setup uses a transmission diffraction grating on a light microscope to concurrently record spectral images of cells and cellular organelles by fluorescence, darkfield, brightfield, and differential interference contrast (DIC) spectral microscopy. Initially, the setup was applied for fluorescence spectral imaging of yeast and mammalian cells labeled with multiple fluorophores. Fluorescence signals originating from fluorescently labeled biomolecules in cells were collected through triple or single filter cubes, separated by the grating, and imaged using a charge-coupled device (CCD) camera. Cellular components such as nuclei, cytoskeleton, and mitochondria were …


Intermediate Filaments Regulate Tissue Size And Stiffness In The Murine Lens, Douglas S. Fudge, John V. Mccuaig, Shannon Van Stralen, John F. Hess, Huan Wang, Richard T. Mathias, Paul G. Fitzgerald May 2011

Intermediate Filaments Regulate Tissue Size And Stiffness In The Murine Lens, Douglas S. Fudge, John V. Mccuaig, Shannon Van Stralen, John F. Hess, Huan Wang, Richard T. Mathias, Paul G. Fitzgerald

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

PURPOSE. To define the contributions of the beaded filament (BF), a lens-specific intermediate filament (IF), to lens morphology and biomechanics.

METHODS. Wild-type and congenic CP49 knockout (KO) mice were compared by using electrophysiological, biomechanical, and morphometric approaches, to determine changes that occurred because of the absence of this cytoskeletal structure.

RESULTS. Electrophysiological assessment established that the fiber cells lacking the lens-specific IFs were indistinguishable from wild-type fiber cells. The CP49 KO mice exhibited lower stiffness, and an unexpected higher resilience than the wildtype lenses. The absence of these filaments resulted in lenses that were smaller, and exhibited a higher ratio …


Quantifying Agonist Activity At G Protein-Coupled Receptors, Frederick J. Ehlert, Hinako Suga, Michael T. Griffin Jan 2011

Quantifying Agonist Activity At G Protein-Coupled Receptors, Frederick J. Ehlert, Hinako Suga, Michael T. Griffin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors.

Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence …


The Energy Landscape Analysis Of Cancer Mutations In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker Jan 2011

The Energy Landscape Analysis Of Cancer Mutations In Protein Kinases, Anshuman Dixit, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results …


An Upper Limit For Macromolecular Crowding Effects, Andrew C. Miklos, Congang Li, Courtney D. Sorell, L. Andrew Lyon, Gary J. Pielak Jan 2011

An Upper Limit For Macromolecular Crowding Effects, Andrew C. Miklos, Congang Li, Courtney D. Sorell, L. Andrew Lyon, Gary J. Pielak

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Background: Solutions containing high macromolecule concentrations are predicted to affect a number of protein properties compared to those properties in dilute solution. In cells, these macromolecular crowders have a large range of sizes and can occupy 30% or more of the available volume. We chose to study the stability and ps-ns internal dynamics of a globular protein whose radius is similar to 2 nm when crowded by a synthetic microgel composed of poly(N-isopropylacrylamide-co-acrylic acid) with particle radii of similar to 300 nm.

Results: Our studies revealed no change in protein rotational or ps-ns backbone dynamics and only mild …


Modeling Measurement Error In Tumor Characterization Studies, Cyril Rakovski, Daniel J. Weisenberger, Paul Marjoram, Peter W. Laird, Kimberly D. Siegmund Jan 2011

Modeling Measurement Error In Tumor Characterization Studies, Cyril Rakovski, Daniel J. Weisenberger, Paul Marjoram, Peter W. Laird, Kimberly D. Siegmund

Mathematics, Physics, and Computer Science Faculty Articles and Research

Background: Etiologic studies of cancer increasingly use molecular features such as gene expression, DNA methylation and sequence mutation to subclassify the cancer type. In large population-based studies, the tumor tissues available for study are archival specimens that provide variable amounts of amplifiable DNA for molecular analysis. As molecular features measured from small amounts of tumor DNA are inherently noisy, we propose a novel approach to improve statistical efficiency when comparing groups of samples. We illustrate the phenomenon using the MethyLight technology, applying our proposed analysis to compare MLH1 DNA methylation levels in males and females studied in the Colon …