Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Cell and Developmental Biology

Münch, Morphology, Microfluidics – Our Structural Problem With The Phloem [Review Article], Michael Knoblauch, Winfried S. Peters Aug 2010

Münch, Morphology, Microfluidics – Our Structural Problem With The Phloem [Review Article], Michael Knoblauch, Winfried S. Peters

Winfried S. Peters

The sieve tubes of the phloem are enigmatic structures. Their role as channels for the distribution of assimilates was established in the 19th century, but their sensitivity to disturbations has hampered the elucidation of their transport mechanisms and its regulation ever since. Ernst Münch's classical monograph of 1930 is generally regarded as the first coherent theory of phloem transport, but the ‘Münchian’ pressure flow mechanism had been discussed already before the turn of the century. Münch's impact rather rested on his simple physical models of the phloem that visualized pressure flow in an intuitive way, and we argue that the …


Legume Phylogeny And The Evolution Of A Unique Contractile Apparatus That Regulates Phloem Transport, Winfried Peters, Claudia Hanakam, Dietmar Haffer, Aart Van Bel, Michael Knoblauch Mar 2010

Legume Phylogeny And The Evolution Of A Unique Contractile Apparatus That Regulates Phloem Transport, Winfried Peters, Claudia Hanakam, Dietmar Haffer, Aart Van Bel, Michael Knoblauch

Winfried S. Peters

Protein bodies called forisomes undergo Ca2+-dependent deformations to occlude sieve tubes reversibly, providing a unique regulatory mechanism of phloem transport. Because forisomes are known exclusively from the Papilionoideae (Leguminosae), the evolution of forisome function may have played a role in the rapid radiation of this huge taxon. The unexpected discovery of a papilionoid species lacking forisomes led us to evaluate a representative set of species covering 33 of the 36 legume tribes traditionally recognized. We found forisomes in Papilionoideae but not in Caesalpinioideae and Mimosoideae. Forisomes were absent from several species of the papilionoid tribe Galegeae. Forisomes with tail-like protrusions …


Prospective Energy Densities In The Forisome, A New Smart Material, William Pickard, Michael Knoblauch, Winfried Peters, Amy Shen Dec 2005

Prospective Energy Densities In The Forisome, A New Smart Material, William Pickard, Michael Knoblauch, Winfried Peters, Amy Shen

Winfried S. Peters

The forisome is a protein structure of plants which, in low Ca2+ solutions, assumes a crystalline condensed conformation and, at high Ca2+, swells to a dispersed conformation; this transition has been attributed to electrostatic deformation of protein “modules”. Forisomes could become an important smart material if the energy density of transformation approached 1 MJ m−3. Quantitation of the forisome as a charged porous continuum permeated by electrolyte fails by orders of magnitude to achieve this energy density electrostatically. However, condensed → dispersed transitions can be visualized alternatively: (i) an ionic bond near the surface of a forisome crystal dissolves to …