Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell and Developmental Biology

A Lipopolysaccharide-Induced Dna-Binding Protein For A Class Ii Gene In B Cells Is Distinct From Nf-Kappa B, Ellen M. Gravallese, Mark R. Boothby, Cynthia M. Smas, Laurie H. Glimcher Apr 2015

A Lipopolysaccharide-Induced Dna-Binding Protein For A Class Ii Gene In B Cells Is Distinct From Nf-Kappa B, Ellen M. Gravallese, Mark R. Boothby, Cynthia M. Smas, Laurie H. Glimcher

Ellen M. Gravallese

Class II (Ia) major histocompatibility complex molecules are cell surface proteins normally expressed by a limited subset of cells of the immune system. These molecules regulate the activation of T cells and are required for the presentation of antigens and the initiation of immune responses. The expression of Ia in B cells is determined by both the developmental stage of the B cell and by certain external stimuli. It has been demonstrated previously that treatment of B cells with lipopolysaccharide (LPS) results in increased surface expression of Ia protein. However, we have confirmed that LPS treatment results in a significant …


Mullerian-Inhibiting Substance Type Ii Receptor Expression And Function In Purified Rat Leydig Cells, Mary Lee, C. Seah, P. Masiakos, Chantal Sottas, F. Preffer, Patricia Donahoe, David Maclaughlin, Matthew Hardy Sep 2014

Mullerian-Inhibiting Substance Type Ii Receptor Expression And Function In Purified Rat Leydig Cells, Mary Lee, C. Seah, P. Masiakos, Chantal Sottas, F. Preffer, Patricia Donahoe, David Maclaughlin, Matthew Hardy

Mary M. Lee

Mullerian-inhibiting substance (MIS), a gonadal hormone in the transforming growth factor-beta superfamily, induces Mullerian duct involution during male sexual differentiation. Mice with null mutations of the MIS ligand or receptor develop Leydig cell hyperplasia and neoplasia in addition to retained Mullerian ducts, whereas MIS-overexpressing transgenic mice have decreased testosterone concentrations and Leydig cell numbers. We hypothesized that MIS directly modulates Leydig cell proliferation and differentiated function in the maturing testis. Therefore, highly purified rat Leydig and Sertoli cells were isolated to examine cell-specific expression, binding, and function of the MIS type II receptor. These studies revealed that this receptor is …


Isolation Of The Rat Gene For Mullerian Inhibiting Substance, Christopher Haqq, Mary Lee, Richard Tizard, Mark Wysk, Janice Demarinis, Patricia Donahoe, Richard Cate Sep 2014

Isolation Of The Rat Gene For Mullerian Inhibiting Substance, Christopher Haqq, Mary Lee, Richard Tizard, Mark Wysk, Janice Demarinis, Patricia Donahoe, Richard Cate

Mary M. Lee

Mullerian inhibiting substance (MIS), a testicular glycoprotein also known as anti-Mullerian hormone, plays a key role in male sexual development by causing regression of the Mullerian duct, the anlagen of the uterus, the Fallopian tubes, and part of the vagina. MIS is also expressed in the postnatal ovary, but its precise function is still not known. We report here the complete nucleotide sequence of the rat MIS gene. Rat MIS is encoded in five exons and is synthesized as a precursor of 553 amino acids, containing a 24-amino-acid leader. Based on homology with human MIS, we predict that the rat …


Rapid Method Of Processing Sperm For Nucleic Acid Extraction In Clinical Research, Matthew K. De Gannes Aug 2014

Rapid Method Of Processing Sperm For Nucleic Acid Extraction In Clinical Research, Matthew K. De Gannes

Masters Theses

Background: Sperm contain highly compact nuclei, inhibiting DNA extraction using traditional techniques. Current methods extracting sperm DNA involve lengthy lysis and no means of stabilizing DNA, hindering clinical research.

Objective: We sought to optimize an efficient method of extracting high quality human sperm DNA.

Methods: Sperm from three volunteers were isolated using PureCeption. We tested 1) proteinase K with DNA/RNA Shield, 2) DTT and TCEP as reducing agents, 3) QIAshredder homogenization, and 4) stability of sperm DNA fresh (baseline) or after 4 weeks of storage at 4OC in DNA/RNA Shield using modified Quick-gDNA MiniPrep. DNA was PCR amplified …


Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.