Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell and Developmental Biology

Decorin Suppresses Tumor Lymphangiogenesis: A Mechanism To Curtail Cancer Progression, Dipon K. Mondal, Christopher Xie, Gabriel J. Pascal, Simone Buraschi, Renato V. Iozzo Apr 2024

Decorin Suppresses Tumor Lymphangiogenesis: A Mechanism To Curtail Cancer Progression, Dipon K. Mondal, Christopher Xie, Gabriel J. Pascal, Simone Buraschi, Renato V. Iozzo

Kimmel Cancer Center Faculty Papers

The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, …


Needle Biopsy Accelerates Pro-Metastatic Changes And Systemic Dissemination In Breast Cancer: Implications For Mortality By Surgery Delay, Hiroyasu Kameyama, Priya Dondapati, Reese Simmons, Macall Leslie, John Langenheim, Yunguang Sun, Misung Yi, Aubrey Rottschaefer, Rashmi Pathak, Shreya Nuguri, Kar-Ming Fung, Shirng-Wern Tsaih, Inna Chervoneva, Hallgeir Rui, Takemi Tanaka Dec 2023

Needle Biopsy Accelerates Pro-Metastatic Changes And Systemic Dissemination In Breast Cancer: Implications For Mortality By Surgery Delay, Hiroyasu Kameyama, Priya Dondapati, Reese Simmons, Macall Leslie, John Langenheim, Yunguang Sun, Misung Yi, Aubrey Rottschaefer, Rashmi Pathak, Shreya Nuguri, Kar-Ming Fung, Shirng-Wern Tsaih, Inna Chervoneva, Hallgeir Rui, Takemi Tanaka

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

ncreased breast cancer (BC) mortality risk posed by delayed surgical resection of tumor after diagnosis is a growing concern, yet the underlying mechanisms remain unknown. Our cohort analyses of early-stage BC patients reveal the emergence of a significantly rising mortality risk when the biopsy-to-surgery interval was extended beyond 53 days. Additionally, histology of post-biopsy tumors shows prolonged retention of a metastasis-permissive wound stroma dominated by M2-like macrophages capable of promoting cancer cell epithelial-to-mesenchymal transition and angiogenesis. We show that needle biopsy promotes systemic dissemination of cancer cells through a mechanism of sustained activation of the COX-2/PGE2/EP2 feedforward loop, …


Zinc Treatment Reverses And Anti-Zn-Regulated Mirs Suppress Esophageal Carcinomas In Vivo, Louise Fong, Kay Huebner, Ruiyan Jing, Karl Smalley, Christopher R Brydges, Oliver Fiehn, John Farber, Carlo M Croce May 2023

Zinc Treatment Reverses And Anti-Zn-Regulated Mirs Suppress Esophageal Carcinomas In Vivo, Louise Fong, Kay Huebner, Ruiyan Jing, Karl Smalley, Christopher R Brydges, Oliver Fiehn, John Farber, Carlo M Croce

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% …


Translation Initiation Complex Eif4f Is A Therapeutic Target For Dual Mtor Kinase Inhibitors In Non-Hodgkin Lymphoma., Christos Demosthenous, Jing Jing Han, Mary J Stenson, Matthew J Maurer, Linda E Wellik, Brian Link, Kristen Hege, Ahmet Dogan, Eduardo Sotomayor, Thomas Witzig, Mamta Gupta Apr 2015

Translation Initiation Complex Eif4f Is A Therapeutic Target For Dual Mtor Kinase Inhibitors In Non-Hodgkin Lymphoma., Christos Demosthenous, Jing Jing Han, Mary J Stenson, Matthew J Maurer, Linda E Wellik, Brian Link, Kristen Hege, Ahmet Dogan, Eduardo Sotomayor, Thomas Witzig, Mamta Gupta

Medicine Faculty Publications

Deregulated mRNA translation has been implicated in disease development and in part is controlled by a eukaryotic initiation complex eIF4F (composed of eIF4E, eIF4G and eIF4A). We demonstrate here that the cap bound fraction from lymphoma cells was enriched with eIF4G and eIF4E indicating that lymphoma cells exist in an activated translational state. Moreover, 77% (110/142) of diffuse large B cell lymphoma tumors expressed eIF4E and this was associated with an inferior event free survival. Over-expression of wild-type eIF4E (eIF4E(WT)) but not cap-mutant eIF4E (eIF4E(cap mutant)) increased the activation of the eIF4F complex. Treatment with the active-site dual mTOR inhibitor …


Clinical Significance Of A Point Mutation In Dna Polymerase Beta (Polb) Gene In Gastric Cancer., Xiaohui Tan, Hongyi Wang, Guangbin Luo, Shuyang Ren, Wenmei Li, Jiantao Cui, Harindarpal S. Gill, Sidney W. Fu, Youyong Lu Jan 2015

Clinical Significance Of A Point Mutation In Dna Polymerase Beta (Polb) Gene In Gastric Cancer., Xiaohui Tan, Hongyi Wang, Guangbin Luo, Shuyang Ren, Wenmei Li, Jiantao Cui, Harindarpal S. Gill, Sidney W. Fu, Youyong Lu

Medicine Faculty Publications

Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal …