Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Cell and Developmental Biology

Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski Nov 2016

Targeted And Controlled Anticancer Drug Delivery And Release With Magnetoelectric Nanoparticles, Alexandra Rodzinski

FIU Electronic Theses and Dissertations

A major challenge of cancer treatment is successful discrimination of cancer cells from healthy cells. Nanotechnology offers multiple venues for efficient cancer targeting. Magnetoelectric nanoparticles (MENs) are a novel, multifaceted, physics-based cancer treatment platform that enables high specificity cancer targeting and externally controlled loaded drug release. The unique magnetoelectric coupling of MENs allows them to convert externally applied magnetic fields into intrinsic electric signals, which allows MENs to both be drawn magnetically towards the cancer site and to electrically interface with cancer cells. Once internalized, the MEN payload release can be externally triggered with a magnetic field. MENs uniquely allow …


Selective Anticancer Activity Of Hydroxyapatite/Chitosan-Poly(D,L)-Lactide-Co-Glycolide Particles Loaded With An Androstane-Based Cancer Inhibitor, Nenad Ignjatović, Katarina M. Penov-Gaši, Victoria M. Wu, Jovana J. Ajduković, Vesna V. Kojić, Dana Vasiljević-Radović, Maja Kuzmanović, Vuk Uskoković, Dragab Uskoković Sep 2016

Selective Anticancer Activity Of Hydroxyapatite/Chitosan-Poly(D,L)-Lactide-Co-Glycolide Particles Loaded With An Androstane-Based Cancer Inhibitor, Nenad Ignjatović, Katarina M. Penov-Gaši, Victoria M. Wu, Jovana J. Ajduković, Vesna V. Kojić, Dana Vasiljević-Radović, Maja Kuzmanović, Vuk Uskoković, Dragab Uskoković

Pharmacy Faculty Articles and Research

In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the …


Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies, …


Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson Aug 2016

Assembly Of Nucleic Acid-Based Nanoparticles By Gas-Liquid Segmented Flow Microfluidics, Matthew L. Capek, Ross Verheul, David H. Thompson

The Summer Undergraduate Research Fellowship (SURF) Symposium

The development of novel and efficient mixing methods is important for optimizing the efficiency of many biological and chemical processes. Tuning the physical and performance properties of nucleic acid-based nanoparticles is one such example known to be strongly affected by mixing efficiency. The characteristics of DNA nanoparticles (such as size, polydispersity, ζ-potential, and gel shift) are important to ensure their therapeutic potency, and new methods to optimize these characteristics are of significant importance to achieve the highest efficacy. In the present study, a simple segmented flow microfluidics system has been developed to augment mixing of pDNA/bPEI nanoparticles. This DNA and …


Synthesis And Characterization Of Nanoparticle-Coupled Proteins In Human Serum Albumin, Kyle M. Mahoney Apr 2016

Synthesis And Characterization Of Nanoparticle-Coupled Proteins In Human Serum Albumin, Kyle M. Mahoney

Honors College Theses

Recently, cancer has become an ever-growing issue and has led to many researchers attempt to unravel the mystery of the disease. This research has led to a promising field of treatment: nanotechnology-coupled pharmaceuticals. Nanoparticles act as a whole unit when in conjugation with other molecules and add to the carrier molecule, most often proteins, benefits the nanoparticles themselves possess. One such carrier protein that can be conjugated with nanoparticles is Human Serum Albumin (HSA). Albumin is of interest in cancer research for two reasons: it is native to the human vasculature so it does not elicit immunological reactions, and it …