Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell and Developmental Biology

Stress-Dependent Regulation Of A Major Node Of The Insulin-Like Peptide Network That Modulates Survival, Rashmi Chandra Jan 2019

Stress-Dependent Regulation Of A Major Node Of The Insulin-Like Peptide Network That Modulates Survival, Rashmi Chandra

Wayne State University Dissertations

Chronic stress disrupts insulin signaling, predisposing human populations to diabetes, cardiovascular disease, Alzheimer’s Disease, and other metabolic and neurological disorders, including post-traumatic disorders (PTSD). Thus, efficient recovery from stress optimizes survival. However, stress recovery in humans is difficult to study, but is much easier to dissect in model organisms. The worm genetic model Caenorhabditis elegans can switch between stressed and non-stressed states, and this switch is largely regulated by insulin signaling. Previously, the Alcedo lab proposed that insulin-like peptides (ILPs), which exist as multiple members of a protein family in both C. elegans and humans, implements a combinatorial coding strategy …


Studies Of Regulated Exocytosis From Neuroendocrine Cells, Madhurima Das Jan 2013

Studies Of Regulated Exocytosis From Neuroendocrine Cells, Madhurima Das

Wayne State University Theses

In this thesis we study cargo release and fusion pore dilation during calcium triggered exocytosis and the co-localization of calcium sensing proteins essential for exocytosis, in neuroendocrine cells.

Pancreatic beta cells secrete several hormones, the most studied one being insulin. C-peptide is a protein which is co-stored with and secreted from the same vesicles as insulin. It is found in the soluble phase unlike insulin, which is found in the dense core. The pancreatic beta cells also secrete the Chromogranin B (CgB) which is mostly found in the dense cores of secretory vesicles. In chapter 1, we found that CgB, …


Axogial Communication Mediated By Soluble Neuregulin-1 And Bdnf, Zhenzhong Ma Jan 2011

Axogial Communication Mediated By Soluble Neuregulin-1 And Bdnf, Zhenzhong Ma

Wayne State University Dissertations

During peripheral nervous system development, successful communication between axons and glial cells including Schwann cells in peripheral nervous system and oligodendrocytes in central nervous system, is required for the proper functions of both neurons and glia. Three types of alternatively-spliced proteins belonging to the neuregulin1 (NRG1) gene family of growth and differentiation factors are essential for Schwann cell survival and peripheral nerve development. While membrane-bound NRG1 forms (type III) has been strongly implicated in the regulation of myelination process at late stage of Schwann cell development, little is known about the role of soluble, heparin-binding forms of NRG1 (type I/II) …


Frazzled And Abelson Interact To Regulate The Actin Cytoskeleton In Drosophila, Bridget Elsa Varughese Jan 2011

Frazzled And Abelson Interact To Regulate The Actin Cytoskeleton In Drosophila, Bridget Elsa Varughese

Wayne State University Dissertations

Guidance receptors such as Frazzled affect cell shape and motility by directly or indirectly modulating the cytoskeleton. Fra is particularly needed for the formation of the posterior commissures in a developing Drosophila embryo. The cytoplasmic tyrosine kinase, Abelson Kinase (Abl) enhances the loss of commissures observed in fra mutant. Abl physically interacts with Frazzled to help guide commissural axons across the midline. Furthermore, the loss of commissural axons is only seen when the actin dynamics are perturbed. Abl is also known to regulate actin-dependent processes underlying formation of filopodia, microspikes and membrane ruffles. So, we established a Drosophila S2 cell …