Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Cell and Developmental Biology

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little Dec 2020

The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little

Dissertations & Theses (Open Access)

Lineage transcription factors mark, promote, and maintain multiple distinct cell types originating from a common progenitor. Despite their essential role, how such factors function and bind genome wide to orchestrate the epigenetic changes necessary to form and maintain these identities in vivo is unclear. One lineage transcription factor NK Homeobox 2-1 (NKX2-1) is expressed throughout the lung epithelium during development and was thought to be lost in the extraordinarily thin cell type required for gas exchange– the alveolar type 1 (AT1) cell. Complementing precise genetic knockouts with cell type-specific ChIP-seq, ATAC-seq, and scRNA-seq, our study shows that AT1 and AT2 …


Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon Feb 2020

Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon

Electronic Thesis and Dissertation Repository

Over the lifetime of an organism, neurons must establish, remodel, and maintain precise connections in order to form neural circuits that are required for proper nervous system functioning. Disruptions in these processes can lead to neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder. Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex have been implicated in ID, yet the role of this complex in neurons is poorly understood. In this project, I established cell-type specific methods to examine the effect of SWI/SNF subunit knockdowns on gene transcription and chromatin structure in the memory-forming neurons of …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …


Epigenetic Modifications Of Human Placenta Associated With Preterm Birth, Drissa Toure May 2017

Epigenetic Modifications Of Human Placenta Associated With Preterm Birth, Drissa Toure

Theses & Dissertations

Preterm birth is a complex multifactorial process. Despite the well-known role of the placenta in supporting the fetal development and maternal-fetal tolerance, the placental epigenetic modifications and preterm birth (PTB) remains poorly understood and under investigated. Various maternal and environment factors can influence epigenetic programming during fetal development to affect the functioning and structures of organs, including the placenta, which can lead to adverse pregnancy outcomes, including PTB. The understanding of the placental epigenetic alterations and maternal determinants associated with PTB are apparently indispensable for the development of actual diagnosis and methods of prevention and treatment of premature labor. The …


Nucleoporin-Mediated Regulation Of The Kcnq1ot1 Imprinted Domain, Saqib Sachani Aug 2016

Nucleoporin-Mediated Regulation Of The Kcnq1ot1 Imprinted Domain, Saqib Sachani

Electronic Thesis and Dissertation Repository

Genomic imprinting is an epigenetic phenomenon that restricts gene expression to one parental allele while the other copy is silent. How this duality is regulated is not fully understood. Using the Kcnq1ot1 imprinted domain as a model, previous work in the laboratory identified nucleoporin 107 as a candidate regulator of imprinted domain regulation. Within the Kcnq1ot1 domain resides the imprinting control region, the paternally expressed Kcnq1ot1 (Kcnq1 opposite transcript 1) noncoding RNA, nine maternal-expressed protein-coding genes, as well as genes that escape imprint regulation. On the maternal allele, the Kcnq1ot1 imprinting control region is methylated, silencing the embedded Kcnq1ot1 …


Heredity In The Epigenetic Era: Are We Facing A Politics Of Reproductive Obligations?, Michael J. Crawford Apr 2016

Heredity In The Epigenetic Era: Are We Facing A Politics Of Reproductive Obligations?, Michael J. Crawford

Biological Sciences Publications

Recent research in the emerging field of epigenetics has implications with the potential to re-ignite acrimony in the discourse of reproductive rights, medical ethics, and the role of the state in our homes and in our lives. For scientists, epigenetics has profoundly realigned our understanding of heredity: epigenetics provides a mechanism through which the environmental challenges met in one generation can be inscribed and transmitted to future offspring. Although both genetic parents have the potential to transmit heritable epigenetic changes to their offspring, mothers have a particularly potent effect because nutrition in the uterine environment can exert a supplemental effect …


Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan Dec 2014

Understanding Ten-Eleven Translocation-2 In Hematological And Nervous Systems, Feng Pan

FIU Electronic Theses and Dissertations

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems.

In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA …