Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

2018

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 39

Full-Text Articles in Cell and Developmental Biology

Genetic Basis Of Thermal Divergence In Saccharomyces Species, Xueying C. Li Dec 2018

Genetic Basis Of Thermal Divergence In Saccharomyces Species, Xueying C. Li

Arts & Sciences Electronic Theses and Dissertations

The genetic architecture of phenotypic divergence is a central question in evolutionary biology. Genetic architecture is impacted by whether evolution occurs through accumulation of many small-effect or a few large-effect changes, the relative contribution of coding and cis-regulatory changes, and the prevalence of epistatic effects. Our empirical understanding of the genetic basis of evolutionary change remains incomplete, largely because reproductive barriers limit genetic analysis to those phenotypes that distinguish closely related species. In this dissertation, I use hybrid genetic analysis to examine the basis of thermal divergence between two post-zygotically isolated species, Saccharomyces cerevisiae and S. uvarum. S. cerevisiae is …


Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman Dec 2018

Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman

Boise State University Theses and Dissertations

Parkinson’s Disease (PD) is an idiopathic disorder with no known cure. With number of cases steadily rising around the world, it is imperative to turn to the underlying cellular and molecular mechanisms of the disease manifestation and neurodegeneration to craft novel modes of therapy. VPS35 is one of the few genes that have identified and definitively linked to familial PD. The particular mutation that has been associated is known to cause dysfunction of a key cellular process known as autophagy. This process is primarily responsible for clearance of unwanted, damaged or misfolded proteins, among other things. Our study reveals an …


Characterization Of A Basement Membrane Associated Protein Encoding Gene In Drosophila Melanogaster, Aref Ranjbar, Ajay Srivastava Nov 2018

Characterization Of A Basement Membrane Associated Protein Encoding Gene In Drosophila Melanogaster, Aref Ranjbar, Ajay Srivastava

Posters-at-the-Capitol

Title: Characterization of a Basement Membrane Associated Protein Encoding Gene in Drosophila melanogaster

Authors: Aref Ranjbar, Mayank Kapadia, Ajay Srivastava, PhD(faculty member, mentor)

Basement Membranes (BM) are important for normal development and tumor progression. In order to get a better understanding of BM dynamics we identified genes that encoded BM interacting proteins. One such gene is predicted to be involved in vesicle-mediated transport in Drosophila melanogaster. Here we characterize this gene by utilizing molecular biology techniques like immunohistochemistry, RNA in situ hybridization, and Western blot analysis utilizing antibodies generated in the laboratory. Western blot analysis identified this protein to be …


Waardenburg Syndrome And Left Persistent Superior Vena Cava, Driss Raissi, Alexander Christie, Kimberly Applegate Nov 2018

Waardenburg Syndrome And Left Persistent Superior Vena Cava, Driss Raissi, Alexander Christie, Kimberly Applegate

Radiology Faculty Publications

Waardenburg syndrome (WS) is a rare genetic disorder secondary to neural crest cell developmental abnormalities. It is predominantly described as an auditory-pigmentary syndrome with diverse patient presentation, typically involving congenital sensorineural hearing loss and pigmentation abnormalities of the skin, hair, and iris. Other developmental abnormalities that may be associated with this syndrome are Hirschsprung's disease and a myriad of cardiovascular congenital defects. We present a case of a young girl with WS who found to have a persistent left superior vena cava (PLSVC) draining into the coronary sinus. The prevalence of PLSVC is increased in patients with chromosomal and genetic …


Hnrnpa2 Mediated Acetylation Reduces Telomere Length In Response To Mitochondrial Dysfunction, Manti Guha, Satish Srinivasan, F. Bradley Johnson, Gordon Ruthel, Kip Guja, Miguel Garcia-Diaz, Brett A. Kaufman, M. Rebecca Glineburg, Jikang Fang, Hiroshi Nakagawa, Jeelan Basha, Tapas Kundu, Narayan G. Avadhani Nov 2018

Hnrnpa2 Mediated Acetylation Reduces Telomere Length In Response To Mitochondrial Dysfunction, Manti Guha, Satish Srinivasan, F. Bradley Johnson, Gordon Ruthel, Kip Guja, Miguel Garcia-Diaz, Brett A. Kaufman, M. Rebecca Glineburg, Jikang Fang, Hiroshi Nakagawa, Jeelan Basha, Tapas Kundu, Narayan G. Avadhani

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner’s syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria …


Stochastic Difference Model For Evolutional Dynamics Of Large Antigen Repertoires In African Trypanosomes, Fan Yu Oct 2018

Stochastic Difference Model For Evolutional Dynamics Of Large Antigen Repertoires In African Trypanosomes, Fan Yu

Annual Symposium on Biomathematics and Ecology Education and Research

No abstract provided.


Effect Of Larval Starvation On Lipid Content Of Drosophila Melanogaster Over 15 Days, Fabian Leija, Allen Gibbs Sep 2018

Effect Of Larval Starvation On Lipid Content Of Drosophila Melanogaster Over 15 Days, Fabian Leija, Allen Gibbs

LSAMP Poster Presentations

Starvation-resistant Drosophila melanogaster, common fruit flies, deriving from 121 generations of starvation selection, have resulted in genetically, behaviorally, and physiologically different individuals compared to non-resistant counterparts. Starvation-resistant Drosophila are more obese, containing twice as much lipids as control flies.This is a result of starvation-resistant fly larva feeding for 5 days and then entering the pupa stage while non-resistant flies only feed for 4 days.

In this experiment, we hope to answer the question of whether the starvation-resistant flies are genetically predisposed to be substantially more obese than wild populations or if it is a result of this alternate behavior …


Integration Of Bmp And Insulin/Igf-1 Signaling Regulates Multiple Homeostatic Functions In Caenorhabditis Elegans, James F. Clark Sep 2018

Integration Of Bmp And Insulin/Igf-1 Signaling Regulates Multiple Homeostatic Functions In Caenorhabditis Elegans, James F. Clark

Dissertations, Theses, and Capstone Projects

The maintenance of homeostatic functions is key to the survival and well-being of an organism. Regulation of homeostasis relies on varied inputs, both intrinsic and extrinsic, to potentiate a web of interconnected signaling relays. Insulin/IGF-1 signaling (IIS) is a well-known regulator of glucose and lipid metabolism, as well as having far reaching effects in other homeostatic mechanisms. On the other hand, bone morphogenetic protein (BMP), a member of the transforming growth factor beta signaling superfamily, is known for its role in differentiation and development, with only recent studies highlighting potential roles in metabolic homeostasis. Here we elucidate new functions for …


N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers Aug 2018

N-Terminal Domain Of Human Uracil Dna Glycosylase (Hung2) Promotes Targeting To Uracil Sites Adjacent To Ssdna-Dsdna Junctions, Brian P Weiser, Gaddiel Rodriguez, Philip A Cole, James T Stivers

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA-dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA-dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias …


The Role Of Mesenchymal Stromal Cells And Classical Dendritic Cells In The Maintenance And Regulation Of The Bone Marrow Niche, Jingzhu Zhang Aug 2018

The Role Of Mesenchymal Stromal Cells And Classical Dendritic Cells In The Maintenance And Regulation Of The Bone Marrow Niche, Jingzhu Zhang

Arts & Sciences Electronic Theses and Dissertations

The bone marrow niche is an important microenvironment for the regulation of normal and malignant hematopoiesis. The first discovered niche component is mesenchymal stromal cells, which are the major source for the production and secretion of multiple niche factors. Mesenchymal stromal cells are heterogeneous and various transgenes have been used to target non-identical but overlapping subpopulations. To further characterize the heterogeneity of mesenchymal stromal cells, we tested the targeting specificity of three tissue-specific Cre-recombinase transgenes. We show that in addition to osteoblasts, Ocn-Cre targets a majority of Cxcl12-abundant reticular (CAR) cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset …


First Record Of The Genus Leptodactylus (Anura: Leptodactylidae) In Cuba: Leptodactylus Fragilis, A Biological Invasion?, Tomás M. Rodríguez-Cabrera, L. Yusnaviel García-Padrón, Andrés R. Acosta Galvis, Rafael O. De Sá, Roberto Alonso Bosch Aug 2018

First Record Of The Genus Leptodactylus (Anura: Leptodactylidae) In Cuba: Leptodactylus Fragilis, A Biological Invasion?, Tomás M. Rodríguez-Cabrera, L. Yusnaviel García-Padrón, Andrés R. Acosta Galvis, Rafael O. De Sá, Roberto Alonso Bosch

Biology Faculty Publications

The Neotropical genus Leptodactylus is currently represented by three species in the West Indies (Leptodactylus albilabris, Leptodactylus fallax and Leptodactylus validus). Based on morphological, acoustic and molecular evidence, we document the presence of a fourth species in the Caribbean region, Leptodactylus fragilis (Brocchi, 1877). The species was found at two localities in western Cuba, and molecular data suggest a northern South American origin, possibly Venezuela, for these populations. We discuss the potential invasive status of L. fragilis, based on its known distribution, relative abundance, behaviour and possible impacts on native species of Cuban amphibians.


Characterization Of She1 Spindle Role Using Ceullular, Biochemical, And Biophysical Methods, Yili Zhu Jul 2018

Characterization Of She1 Spindle Role Using Ceullular, Biochemical, And Biophysical Methods, Yili Zhu

Doctoral Dissertations

During development, metaphase spindles undergo large movement and/or rotation to determine the cell division axis. While it has been shown that spindle translocation is achieved by astral microtubules pulling and/or pushing the cortex, how metaphase spindle stability is maintained during translocation remains not fully understood. In budding yeast, our lab has previously proposed a model for spindle orientation wherein the mitotic spindle protein She1 promotes spindle translocation across the bud neck by polarizing cortical dynein pulling activity on the astral microtubules. Intriguingly, She1 exhibits dominant spindle localization throughout the cell cycle. However, whether She1 has any additional role on the …


Epigenetic Alterations Mediate Ipsc Normalization Of Dna-Repair Expression And Tnr Stability In Huntington's Disease, Peter A. Mollica, Martina Zamponi, John Reid, Deepak Sharma, Alyson E. White, Roy C. Ogle, Robert D. Bruno, Patrick C. Sachs Jul 2018

Epigenetic Alterations Mediate Ipsc Normalization Of Dna-Repair Expression And Tnr Stability In Huntington's Disease, Peter A. Mollica, Martina Zamponi, John Reid, Deepak Sharma, Alyson E. White, Roy C. Ogle, Robert D. Bruno, Patrick C. Sachs

Medical Diagnostics & Translational Sciences Faculty Publications

Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction in pluripotency and neurodevelopment are poorly understood. We had previously identified downregulation of selected DNA repair genes in HD fibroblasts relative to wild-type fibroblasts, as a result of promoter hypermethylation. Here, we tested the hypothesis that hypomethylation during cellular reprogramming to the induced pluripotent stem cell (iPSC) state leads to upregulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region …


Exploring The Role Of Rna Polymerase Iii Complex Assembly On Ribosomal Dna Silencing In Saccharomyces Cerevisiae, Kyle Thomas Kern Jun 2018

Exploring The Role Of Rna Polymerase Iii Complex Assembly On Ribosomal Dna Silencing In Saccharomyces Cerevisiae, Kyle Thomas Kern

LSU Doctoral Dissertations

The yeast rDNA region is host to a number of transcriptional regulatory elements, which work in conjunction to generate essential RNA subunits of ribosomes, as well as protecting the region from DNA damage. The role of RNA polymerase III complex binding at the 5S gene on rDNA silencing in the NTS2 region was investigated, both by use of a TY1:MET15 reporter insert and a MET15 gene integration at an endogenous SphI site. It was discovered that Pol III complexes do have an effect on reporter expression in the NTS2 region, though the specific effect was different based on the method …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


The Role Of Actr10 In Nervous System Development And Disease, Amy Herbert May 2018

The Role Of Actr10 In Nervous System Development And Disease, Amy Herbert

Arts & Sciences Electronic Theses and Dissertations

The vertebrate nervous system requires myelinating glia for the fast propagation of action potentials, as well as for vital trophic support to axons. Myelinating glia produce myelin, which is a lipid-rich, multi-lamellar sheath that surrounds axons and allows for rapid electrical signaling. In the central nervous system (CNS), myelin is produced by oligodendrocytes, while in the peripheral nervous system (PNS), Schwann cells perform this function. Although glia have historically been understudied compared to neurons, recent research has uncovered critical roles for glia in nervous system development and disease. Disruption to myelin or to the glial cells that generate myelin can …


Tarbp2 -Mediated Post-Transcriptional Regulation Of Gene Expression During Murine Embryonic Development And Spermatogenesis, Sri Ramulu N. Pullagura May 2018

Tarbp2 -Mediated Post-Transcriptional Regulation Of Gene Expression During Murine Embryonic Development And Spermatogenesis, Sri Ramulu N. Pullagura

Electronic Theses and Dissertations

Micro RNAs (miRNAs), which are ~22 nucleotide (nt) long RNA molecules and several RNA binding proteins (RBPs) engage in an RNA dependent post-transcriptional gene silencing process known as RNA interference (RNAi). In the canonical miRNA biogenesis pathway, an enzyme known as DICER cleaves the ~70nt pre-miRNA to a ~22nt long miRNA that is loaded into the RNAi effector mechanism, the RNA induced silencing complex (RISC).

Several in vitro studies provide suggestive evidence that mammalian double stranded RNA binding proteins (dsRBPs), such as TARBP2, act as DICER cofactors in miRNA processing and RISC loading to promote RNAi activity. A screen attempting …


Determinants Of Multi-Scale Patterning In Growth Plate Cartilage, Alek Erickson May 2018

Determinants Of Multi-Scale Patterning In Growth Plate Cartilage, Alek Erickson

Theses & Dissertations

ABSTRACT

Functional architectures of complex adaptive systems emerge by dynamic control over properties of individual components. During skeletal development, growth plate cartilage matches bone geometries to body plan requisites by spatiotemporally regulating chondrocyte actions. Bone growth potential is managed by the proximodistal patterning of chondrocyte populations into differentiation zones, while growth vectors are specified by the unique columnar arrangement of clonal groups. Chondrocyte organization at both tissue and cell levels is influenced by a cartilage-wide communication network that relies on zone-specific release and interpretation of paracrine signals. Despite genetic characterization of signaling interactions necessary for cartilage maturation, the regulatory mechanisms …


Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott May 2018

Functional Studies Of The E. Coli Proc And A Putative Ortholog Mrub_1345, Maureen Azar, Dr. Lori Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of Escherichia coli and Meiothermus ruber proC genes using the complementation assay. In this research project, mutants of varying severity to the functional state of the protein were developed. The results showed that two or more amino acid deletions reduced or eliminated ProC function. Amino acid substitutions, on the other hand, were not severe enough to impact ProC function. Double and triple mutants …


Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro May 2018

Genetic Testing And A Real World Case Of Lynch Syndrome, Paige Montanaro

Senior Honors Projects

In recent years, advancements in genetic testing methods have revolutionized the medical field by enhancing the ability to identify persons with an inherited predisposition to cancer. According to the American Society for Clinical Oncology, individuals should undergo genetic testing when he or she meets the following criteria: the individual demonstrates familial history that indicates a predisposition to certain cancers, the test can be adequately interpreted, and the results will aid in the diagnosis, treatment, or management of the patient or additional family members at risk. Genetic testing can be done on samples of hair, skin, blood, amniotic fluid, or other …


Evolutionary Conservation Of Midline Repulsion By Robo Family Receptors In Flies And Mice, Allison Loy May 2018

Evolutionary Conservation Of Midline Repulsion By Robo Family Receptors In Flies And Mice, Allison Loy

Biological Sciences Undergraduate Honors Theses

As the nervous system develops in animal embryos, neuronal axons are guided to their synaptic targets by extra cellular cues that signal through axon guidance receptors expressed on the surface of the axon. In animals with bilateral symmetry, one of the important decisions made by nearly every axon in the embryonic nervous system is whether to stay on its own side of the body, or to cross the midline and connect to cells on the opposite side. The Roundabout (Robo) family is an evolutionarily conserved group of axon guidance receptors that regulate midline crossing in a wide range of animal …


Identifying New Genes Involved In Centromere Establishment, Megan Boyer May 2018

Identifying New Genes Involved In Centromere Establishment, Megan Boyer

Honors Scholar Theses

The centromere is a site on the chromosome that mediates accurate cell division by serving as a platform for kinetochore assembly, and microtubule attachment during cell division. Errors in the process of chromosome segregation can contribute to genetic irregularities, such as those seen in cancer and congenital defects. Our lab uses the ectopic centromere as a tool to discover what proteins may be involved in centromere establishment, defined as the deposition of CENP-A at the locus. We use the lacO/LacI system within Drosophila S2 cells that contain a CAL1-GFP- LacI transgene and an integrated lacO array to study the ectopic …


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


Restoration Of Phage Growth On A Non-Permissive Host By Bypassing Transcription Termination Signals, Millicent Ronkainen Apr 2018

Restoration Of Phage Growth On A Non-Permissive Host By Bypassing Transcription Termination Signals, Millicent Ronkainen

Mahurin Honors College Capstone Experience/Thesis Projects

RNA polymerase is the central enzyme in all gene expression. The rpoCY75N mutation in the zinc-binding domain of the β’ subunit of E. coli RNA polymerase blocks a unique RNA-based mechanism of transcription antitermination utilized by bacteriophage HK022 and its relatives. Here, we describe the characterization of mutant phage, orc0368, which overcomes the rpoCY75N mutation. The orc0368 genome varies from the wild type phage genome by 4 single base pair mutations. Three of these mutations were not characterized because they occur in intergenic regions but the fourth was chosen for study because of its location between a series …


Characterization Of A Morphogenetic Furrow Specific Gal4 Driver In The Developing Drosophila Eye, Ankita Sarkar, Neha Gogia, Kevin Farley, Lydia C. Payton, Amit Singh Apr 2018

Characterization Of A Morphogenetic Furrow Specific Gal4 Driver In The Developing Drosophila Eye, Ankita Sarkar, Neha Gogia, Kevin Farley, Lydia C. Payton, Amit Singh

Biology Faculty Publications

The ability to express a gene of interest in a spatio-temporal manner using Gal4-UAS system has allowed the use of Drosophila model to study various biological phenomenon. During Drosophila eye development, a synchronous wave of differentiation called Morphogenetic furrow (MF) initiates at the posterior margin resulting in differentiation of retinal neurons. This synchronous differentiation is also observed in the differentiating retina of vertebrates. Since MF is highly dynamic, it can serve as an excellent model to study patterning and differentiation. However, there are not any Gal4 drivers available to observe the gain- of- function or loss- of- function of a …


Genetic Basis Of Larval Crystal Cell Quantity Variation In The Drosophila Genetic Reference Panel (Dgrp), Brian Tang Apr 2018

Genetic Basis Of Larval Crystal Cell Quantity Variation In The Drosophila Genetic Reference Panel (Dgrp), Brian Tang

Student Theses and Dissertations

Crystal cells are one of three requisite hemocytes that take part in fighting infection and wound healing in Drosophila melanogaster (common fruit flies). The developmental genetics of crystal cell formation is only beginning to be discovered. To address this question, we performed a Genome-Wide Association Study (GWAS) on larval crystal cell number from 78 isolines of the Drosophila Genetic Reference Panel (DGRP) collection. The DGRP consists of naturally caught fruit flies that are inbred to near homozygosity with completely sequenced genomes. By placing the wandering third instar larvae under heatshock, a process that induces the melanization of crystal cells, …


Differential Gene Expression In Response To Hypoxia And Acidosis In Chest Wall Deformities And Chondrosarcoma, Jamie L. Durbin Apr 2018

Differential Gene Expression In Response To Hypoxia And Acidosis In Chest Wall Deformities And Chondrosarcoma, Jamie L. Durbin

Biological Sciences Theses & Dissertations

The importance of understanding how costal cartilage chondrocytes respond to stimuli such as oxidative stress and low pH has been largely overlooked in studies involving tissue culturing due to major differences between oxygen and pH levels during incubation and the natural environment of hyaline cartilage. Hyaline cartilage is avascular and naturally hypoxic which subsequently leads to increased glycolytic metabolism and ultimately causes a decrease in extracellular pH. To examine how healthy costal cartilage responds to these extreme growth conditions, we examined responses in three hyaline cartilage diseases. Our ability to identify the disease mechanisms responsible for pectus excavatum, pectus carinatum, …


Changes In The Proliferation And Gene Expression Of Huvecs In Response To Treatment With Plant Secondary Metabolites, Caleigh Howard Mar 2018

Changes In The Proliferation And Gene Expression Of Huvecs In Response To Treatment With Plant Secondary Metabolites, Caleigh Howard

Seaver College Research And Scholarly Achievement Symposium

Medicinal plants have historically been a valuable source of new drugs, and Southern California possesses a rich collection of native plants which have been used as medicines by native people groups for thousands of years. Angiogenesis is the biological process of new blood-vessel growth from endothelial cells. It is an essential part of the wound-healing process, and increased angiogenesis has also been implicated in the growth of some types of cancerous tumors. In this study, extracts of the Southern Californian native plants Red shanks (Adenostoma sparsifolium) and the alkaloid extract of Jimson weed (Datura wrightii) were …


Self-Oligomerization Regulates Stability Of Survival Motor Neuron Protein Isoforms By Sequestering An ScfSlmb Degron, Kelsey M. Gray, Kevin A. Kaifer, David Baillat, Ying Wen, Thomas R. Bonacci, Allison D. Ebert, Amanda C. Raimer, Ashlyn M. Spring, Sara Ten Have, Jacqueline J. Glascock, Kushol Gupta, Gregory D. Van Duyne, Michael J. Emanuele, Angus I. Lamond, Eric J. Wagner, Christian L. Lorson, A. Gregory Matera Mar 2018

Self-Oligomerization Regulates Stability Of Survival Motor Neuron Protein Isoforms By Sequestering An ScfSlmb Degron, Kelsey M. Gray, Kevin A. Kaifer, David Baillat, Ying Wen, Thomas R. Bonacci, Allison D. Ebert, Amanda C. Raimer, Ashlyn M. Spring, Sara Ten Have, Jacqueline J. Glascock, Kushol Gupta, Gregory D. Van Duyne, Michael J. Emanuele, Angus I. Lamond, Eric J. Wagner, Christian L. Lorson, A. Gregory Matera

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΔ7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. …