Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

Functional And Mutational Analysis Of Human Recq-Like Dna Helicases In Saccharomyces Cerevisiae, Hamed Mirzaei-Souderjani Jan 2013

Functional And Mutational Analysis Of Human Recq-Like Dna Helicases In Saccharomyces Cerevisiae, Hamed Mirzaei-Souderjani

USF Tampa Graduate Theses and Dissertations

RecQ-like proteins are a family of DNA helicases that are evolutionary conserved from prokaryotes to eukaryotes. A large amount of experimental evidence suggests these proteins have a major role in the maintenance of genome stability. In humans five RecQ like helicase have been identified (RecQL1, BLM, WRN, RecQL4, and RecQL5), three of which are associated with rare genetic disorders with sever chromosomal and developmental abnormalities, and an elevated predisposition to cancer. Among the disease associated RecQ-like helicases, BLM and WRN have been subject to extensive research, while our collective knowledge about the function of RecQL4 is still very limited. Similarly, …


Sirt1 Regulation Of The Heat Shock Response In An Hsf1-Dependent Manner And The Impact Of Caloric Restriction, Rachel Rene Raynes Jan 2013

Sirt1 Regulation Of The Heat Shock Response In An Hsf1-Dependent Manner And The Impact Of Caloric Restriction, Rachel Rene Raynes

USF Tampa Graduate Theses and Dissertations

The heat shock response (HSR) is the cell's molecular reaction to protein damaging stress and is critical in the management of denatured proteins. Activation of HSF1, the master transcriptional regulator of the HSR, results in the induction of molecular chaperones called heat shock proteins (HSPs). Transcription of hsp genes is promoted by the hyperphosphorylation of HSF1, while the attenuation of the HSR is regulated by a dual mechanism involving negative feedback inhibition from HSPs and acetylation at a critical lysine residue within the DNA binding domain of HSF1, which results in a loss of affinity for DNA. SIRT1 is a …