Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Cell and Developmental Biology

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson Jan 2023

Dna Methylation And The Response To Infection In Introduced House Sparrows, Melanie Gibson

Electronic Theses and Dissertations

Epigenetics is the study of molecular modification of a genome without changing its base pairs. The most studied type of epigenetic mechanism is DNA methylation, which is capable of turning a gene “on” or “off.” Epigenetic potential is the capacity to which an individual can have methylation on its genome. The more CpGs available, the greater the epigenetic potential. In invasive species, genetic variation has been observed to be paradoxical: not much of it exists on a genomic level, but epigenetically, phenotypic variation can occur. The focus on shift in gene expression in this study is on Toll-Like Receptor 4 …


The Role Of Cort And Anaphase Promoting Complex/Cyclosome (Apc/C) In Drosophila Sex Determination And Meiosis, Abuzar Sikander Malik Jan 2023

The Role Of Cort And Anaphase Promoting Complex/Cyclosome (Apc/C) In Drosophila Sex Determination And Meiosis, Abuzar Sikander Malik

Electronic Theses and Dissertations

The E3 ubiquitin ligase, APC/C, is essential for the completion cell cycle; along with its co-activators it allows mitotic exit and maintenance of G1. APC/C marks various substrates with ubiquitin chains; marked substrates are subsequently destroyed via the 26S proteasome pathway. Cort is a Drosophila female meiosis specific activator of APC/C. Cort works within meiosis in conjunction with Fzy to mediate Securin and cyclin destruction. A C-terminal IR-tail motif and a N-terminal C-box support Cort-APC/C interaction, whereas short motifs like D-box and KEN-box on the target protein impart substrate recognition to Cort. Cort expression is tightly controlled in the female …


Functional Role Of Ppal And Potential For Moss In Industrial Applications., Susana Perez Martinez May 2022

Functional Role Of Ppal And Potential For Moss In Industrial Applications., Susana Perez Martinez

Electronic Theses and Dissertations

This dissertation is an examination and characterization of the functional roles of PPAL. PROTEIN PRENYLTRANSFERASE ALPHA SUBUNIT-LIKE (PPAL) is a recently discovered gene. PPAL homologs are present in all plants and many animals, where its function is largely unknown. It is possible that PPAL could participate in prenylation processes since it shares similarity to the α subunits of known prenylation enzymes. Prenylation is a post-translational modification of proteins that involves the addition of a lipid moiety to proteins to facilitate membrane targeting and association and promote protein-protein interactions. Prenylation has important roles in plant growth and development, including …


Deciphering The Perpetual Fight Between Virus And Host: Utilizing Bioinformatics To Elucidate The Host's Genetic Mechanisms That Influence Jc Polyomavirus Infection, Michael P. Wilczek Aug 2021

Deciphering The Perpetual Fight Between Virus And Host: Utilizing Bioinformatics To Elucidate The Host's Genetic Mechanisms That Influence Jc Polyomavirus Infection, Michael P. Wilczek

Electronic Theses and Dissertations

JC polyomavirus (JCPyV) is a human-specific pathogen that infects 50-80% of the population, and can cause a deadly, demyelinating disease, known as progressive multifocal leukoencephalopathy (PML). In most of the population, JCPyV persistently infects the kidneys but during immunosuppression, it can reactivate and spread to the central nervous system (CNS), causing PML. In the CNS, JCPyV targets two cell types, astrocytes, and oligodendrocytes. Due to the hallmark pathology of oligodendrocyte lysis observed in disease, oligodendrocytes were thought to be the main cell type involved during JCPyV infection. However, recent evidence suggests that astrocytes are targeted by the virus and act …


Translational Fidelity And Its Role In Neuronal Homeostasis, Markus Terrey May 2021

Translational Fidelity And Its Role In Neuronal Homeostasis, Markus Terrey

Electronic Theses and Dissertations

The process of translation, which refers to decoding genetic information from mRNA to protein, is vital for all cellular function. Translational fidelity starts at the level of aminoacylation of transfer RNAs (tRNA). This reaction is catalyzed by aminoacyl tRNA synthetases where each amino acid is transferred to its corresponding cognate tRNA. Because tRNAs harbor the anticodon sequence to decodes a particular mRNA codon, the specific aminoacylation of the tRNA with a cognate amino acid establishes the rules of decoding genetic code into proteins. Aminoacylated tRNAs are then delivered to ribosomes, where ribosomes in a highly organized manner need to accurately …


Tarbp2 -Mediated Post-Transcriptional Regulation Of Gene Expression During Murine Embryonic Development And Spermatogenesis, Sri Ramulu N. Pullagura May 2018

Tarbp2 -Mediated Post-Transcriptional Regulation Of Gene Expression During Murine Embryonic Development And Spermatogenesis, Sri Ramulu N. Pullagura

Electronic Theses and Dissertations

Micro RNAs (miRNAs), which are ~22 nucleotide (nt) long RNA molecules and several RNA binding proteins (RBPs) engage in an RNA dependent post-transcriptional gene silencing process known as RNA interference (RNAi). In the canonical miRNA biogenesis pathway, an enzyme known as DICER cleaves the ~70nt pre-miRNA to a ~22nt long miRNA that is loaded into the RNAi effector mechanism, the RNA induced silencing complex (RISC).

Several in vitro studies provide suggestive evidence that mammalian double stranded RNA binding proteins (dsRBPs), such as TARBP2, act as DICER cofactors in miRNA processing and RISC loading to promote RNAi activity. A screen attempting …


The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers Aug 2017

The Dlk1-Meg3 Locus In Malignant Cells Of Proposed Primordial Germ Cell Origins., Zachariah Payne Sellers

Electronic Theses and Dissertations

Primordial germ cells (PGCs) are hypothesized to deposit hematopoietic stem cells (HSCs) along their migration route through the embryo during the early stages of embryogenesis. PGCs also undergo global chromatin remodeling, including the erasure and reestablishment of genomic imprints, during this migration. While PGCs do not spontaneously form teratomas, their malignant development into germ cell tumors (GCTs) in vivo is often accompanied by the retention of hypomethylation at the IGF2-H19 imprinting control differentially methylated region (DMR). Previous studies in bimaternal embryos determined that proper genomic imprinting at two paternally imprinted loci was necessary for their growth and development: Igf2-H19 and …