Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Genetics

PDF

2021

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Cell and Developmental Biology

Induction Of Il19 Expression Through Jnk And Cgas-Sting Modulates Dna Damage–Induced Cytokine Production, Sara H. Small, E. Jessica Tang, Ryan L. Ragland, Yaroslava Ruzankina, David W. Schoppy, Rahul S. Mandal, M. Rebecca Glineburg, Zgjim Ustelenca, Daniel J. Powell, Fiona Simpkins, F. Bradley Johnson, Eric J. Brown Dec 2021

Induction Of Il19 Expression Through Jnk And Cgas-Sting Modulates Dna Damage–Induced Cytokine Production, Sara H. Small, E. Jessica Tang, Ryan L. Ragland, Yaroslava Ruzankina, David W. Schoppy, Rahul S. Mandal, M. Rebecca Glineburg, Zgjim Ustelenca, Daniel J. Powell, Fiona Simpkins, F. Bradley Johnson, Eric J. Brown

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Cytokine production is a critical component of cell-extrinsic responses to DNA damage and cellular senescence. Here, we demonstrated that expression of the gene encoding interleukin-19 (IL-19) was enhanced by DNA damage through pathways mediated by c-Jun amino-terminal kinase (JNK) and cGAS-STING and that IL19 expression was required for the subsequent production of the cytokines IL-1, IL-6, and IL-8. IL19 expression was stimulated by diverse cellular stresses, including inhibition of the DNA replication checkpoint kinase ATR (ataxia telangiectasia and Rad3-related protein), oncogene expression, replicative exhaustion, oxidative stress, and DNA double-strand breaks. Unlike the production of IL-6 and IL-8, IL19 expression was …


Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari Dec 2021

Functional Characterization Of Cancer-Associated Dna Polymerase Ε Variants, Stephanie R. Barbari

Theses & Dissertations

Replicative DNA polymerases ε (Polε) and δ (Polδ) achieve high fidelity DNA synthesis through a precise balance of polymerization and exonucleolytic proofreading. Errors that escape proofreading are corrected by DNA mismatch repair (MMR). Ultramutated human cancers with proficient MMR carry alterations in the exonuclease domain of Polε, which were initially predicted to abolish proofreading. However, functional studies in yeast of the most recurrent Polε-P286R variant suggested defects beyond a loss of exonuclease activity. Indeed, biochemical analysis of the yeast Polε-P286R analog revealed increased polymerization capacity in addition to decreased proofreading, which enables efficient mismatch extension and bypass of replication-blocking non-B …


Citric Acid/Β-Alanine Carbon Dots As A Novel Tool For Delivery Of Plasmid Dna Into E. Coli Cells, Anju Pandey, Asmita Devkota, Anil Sigdel, Zeinab Yadegari, C. Korsi Dumenyo, Ali Taheri Dec 2021

Citric Acid/Β-Alanine Carbon Dots As A Novel Tool For Delivery Of Plasmid Dna Into E. Coli Cells, Anju Pandey, Asmita Devkota, Anil Sigdel, Zeinab Yadegari, C. Korsi Dumenyo, Ali Taheri

Agricultural and Environmental Sciences Faculty Research

Successful delivery of plasmid DNA into the microbial cells is fundamental in recombinant DNA technology. Natural bacterial transformation is limited to only certain species due in part to the repulsive forces between negatively charged DNA and bacterial membranes. Most common method of DNA delivery into bacteria is artificial transformation through heat shock and electroporation. These methods require sophisticated instruments and tedious steps in preparation of competent cells. Transformation by conjugation is also not applicable to all plasmids. Nanoparticles have been used successfully in therapeutics for drug delivery into animal cells. They are starting to gain popularity in plant sciences as …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


The Multifaceted Role Of Ccar-1 In The Alternative Splicing And Germline Regulation In Caenorhabditis Elegans, Doreen Ikhuva Lugano Oct 2021

The Multifaceted Role Of Ccar-1 In The Alternative Splicing And Germline Regulation In Caenorhabditis Elegans, Doreen Ikhuva Lugano

USF Tampa Graduate Theses and Dissertations

The Cell Division Cycle and Apoptosis Regulator (CCAR) family members are an enigmatic family of proteins regulating metabolism, cancer, apoptosis, DNA damage, and stress. Mammals have CCAR family members, CCAR1 and CCAR2/DBC1, which evolved from the founding family member CCAR-1/LST-3 expressed in Caenorhabditis elegans. Several studies have shown the importance of understanding these proteins' function in standard and altered physiological processes. Our studies aim to understand the genome-wide alternative splicing and germline regulation of Caenorhabditis elegans CCAR-1 in normal and heat shock conditions. Recently, mammalian CCAR family member CCAR2/DBC1 regulates the alternative splicing by forming a complex with ZNF326. This …


Human 5’-Tailed Mirtrons Are Processed By Rnasep, Mohammad Farid Zia Oct 2021

Human 5’-Tailed Mirtrons Are Processed By Rnasep, Mohammad Farid Zia

Dissertations

Approximately a thousand microRNAs (miRNAs) are documented from human cells. A third appear to transit non-canonical pathways that typically bypass processing by Drosha, the dedicated nuclear miRNA producing enzyme. The largest class of non-canonical miRNAs are mirtrons which eschew Drosha to mature through spliceosome activity. While mirtrons are found in several configurations, the vast majority of human mirtron species are 5’-tailed. For these mirtrons, a 3’ splice site defines the 3’ end of their hairpin precursor while a “tail” of variable length separates the 5’ base of the hairpin from the nearest splice site. How this tail is removed is …


Using Molecular Diagnostics To Develop Therapeutic Strategies For Carbapenem-Resistant Gram-Negative Infections, Fred C. Tenover Sep 2021

Using Molecular Diagnostics To Develop Therapeutic Strategies For Carbapenem-Resistant Gram-Negative Infections, Fred C. Tenover

Biology Faculty Publications

Infections caused by multidrug-resistant Gram-negative organisms have become a global threat. Such infections can be very difficult to treat, especially when they are caused by carbapenemase-producing organisms (CPO). Since infections caused by CPO tend to have worse outcomes than non-CPO infections, it is important to identify the type of carbapenemase present in the isolate or at least the Ambler Class (i.e., A, B, or D), to optimize therapy. Many of the newer beta-lactam/beta-lactamase inhibitor combinations are not active against organisms carrying Class B metallo-enzymes, so differentiating organisms with Class A or D carbapenemases from those with Class B enzymes rapidly …


The Effects Of Ppal-1 In Arabidopsis Gamete Development, Amanda J White, Susana Perez-Martinez, Mark P. Running Sep 2021

The Effects Of Ppal-1 In Arabidopsis Gamete Development, Amanda J White, Susana Perez-Martinez, Mark P. Running

The Cardinal Edge

Prenylation is a type of post-translational modification in which a 15- or 20-carbon lipid is added to the carboxyl (C) terminus of the protein. Arabidopsis thaliana contains the PROTEIN PRENYLTRANSFERASE ALPHA SUBUNIT-LIKE (PPAL) gene, which encodes a protein with homology to the α-subunits of the three known prenylation enzymes, PFT, PGGT, and Rab-GGT. We previously identified two mutations in PPAL, one of which is ppal-1, which contains a T-DNA insertion in the fourth intron. We have previously observed that self-fertilizing heterozygous ppal-1 plants produce progeny in which homozygous ppal-1 is underrepresented. This project attempts to ascertain …


Phenotypic/Genotypic Profile Of Oxa-10-Like-Harboring, Carbapenem-Resistant Pseudomonas Aeruginosa: Using Validated Pharmacokinetic/Pharmacodynamic In Vivo Models To Further Evaluate Enzyme Functionality And Clinical Implications, Fred C. Tenover, Christian M. Gill, Adrian Brink, Chun Yat Chu, Jennifer Coetzee, George Dimopoulos, Clinton Moodley, Christoffel Johannes Opperman, Spyros Pournaras, Isabella A. Tickler, Hafsah Deepa Tootla, Sophia Vourli, David P. Nicolau Sep 2021

Phenotypic/Genotypic Profile Of Oxa-10-Like-Harboring, Carbapenem-Resistant Pseudomonas Aeruginosa: Using Validated Pharmacokinetic/Pharmacodynamic In Vivo Models To Further Evaluate Enzyme Functionality And Clinical Implications, Fred C. Tenover, Christian M. Gill, Adrian Brink, Chun Yat Chu, Jennifer Coetzee, George Dimopoulos, Clinton Moodley, Christoffel Johannes Opperman, Spyros Pournaras, Isabella A. Tickler, Hafsah Deepa Tootla, Sophia Vourli, David P. Nicolau

Biology Faculty Publications

In vitro MICs and in vivo pharmacodynamics of ceftazidime and cefepime human-simulated regimens (HSR) against modified carbapenem inactivation method (mCIM)-positive Pseudomonas aeruginosa isolates harboring different OXA-10-like subtypes were described. The murine thigh model assessed ceftazidime (2 g every 8 h [q8h] HSR) and cefepime (2 g and 1 g q8h HSR). Phenotypes were similar despite possessing OXA-10-like subtypes with differing spectra. Ceftazidime produced ≥1-log10 killing in all isolates. Cefepime activity was dose dependent and MIC driven. This approach may be useful in assessing the implications of β-lactamase variants.


Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen Sep 2021

Investigation Of Notch Signaling In Cone Fate Specification In Vertebrate Retina, Xueqing Chen

Dissertations, Theses, and Capstone Projects

In the vertebrate retina, cone photoreceptors are crucial for high acuity color vision. Several retinal diseases lead to loss of cones and there is a need to identify the normal developmental genesis of these cells to inform the development of stem cell-based therapies. Cone genesis has previously been shown to be repressed by Notch signaling, however, the mechanism by which Notch signaling controls cone fate determination is still unclear. It has been identified that cone photoreceptors are formed from multipotent retinal progenitor cells (RPCs) that first generate genetically-defined, restricted RPCs with limited mitotic and fate potential to preferentially form cones …


Exploring Β-Cell Function And Heterogeneity In Obese Sm/J Mice, Mario Alejandro Miranda Aug 2021

Exploring Β-Cell Function And Heterogeneity In Obese Sm/J Mice, Mario Alejandro Miranda

Arts & Sciences Electronic Theses and Dissertations

Pancreatic β-cells perform glucose-stimulated insulin secretion, a process required to maintain systemic glucose homeostasis. Obesity promotes glycemic and inflammatory stress, causing β-cell death and dysfunction, resulting in diabetes. Efforts to improve β-cell function in obesity have been hampered by observations that β-cells are highly heterogeneous, varying in morphology, function, and gene expression. There is great need to understand the breadth of β-cell heterogeneity in health and obesity to improve diabetic therapies.High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we show that as they resolve hyperglycemia, obese SM/J …


Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell Aug 2021

Discovery Of Sex Differences In Response To P53 Loss And Gain-Of-Function In Glioblastoma, Nathan Cuyle Rockwell

Arts & Sciences Electronic Theses and Dissertations

The tumor suppressor TP53 (p53) is the most frequently mutated gene in cancer and among the most mutated genes in brain cancer. Functionally, p53 is a transcription factor that, when activated by an array of stress stimuli, regulates a complex transcriptional program that contributes to a variety of antiproliferative pathways. The loss of p53 function (LOF), either through mutation, deletion, or inhibition by alterations in the proteins that regulate p53, removes an essential barrier to the unfettered proliferation and genomic instability that drive transformation. Unlike most tumor suppressors, many p53 mutations are missense mutations that lead to stable expression of …


Unbiased Automated Quantitation Of Ros Signals In Live Retinal Neurons Of Drosophila Using Fiji/Imagej, Prajakta Deshpande, Neha Gogia, Anuradha Venkatakrishnan Chimata, Amit Singh Aug 2021

Unbiased Automated Quantitation Of Ros Signals In Live Retinal Neurons Of Drosophila Using Fiji/Imagej, Prajakta Deshpande, Neha Gogia, Anuradha Venkatakrishnan Chimata, Amit Singh

Biology Faculty Publications

Numerous imaging modules are utilized to study changes that occur during cellular processes. Besides qualitative (immunohistochemical) or semiquantitative (Western blot) approaches, direct quantitation method(s) for detecting and analyzing signal intensities for disease(s) biomarkers are lacking. Thus, there is a need to develop method(s) to quantitate specific signals and eliminate noise during live tissue imaging. An increase in reactive oxygen species (ROS) such as superoxide (O2•-) radicals results in oxidative damage of biomolecules, which leads to oxidative stress. This can be detected by dihydroethidium staining in live tissue(s), which does not rely on fixation and helps prevent stress on tissues. However, …


Regulation Of Lung Mesenchymal Cells By Epithelial Wnt Ligands, Odemaris Narvaez Del Pilar Aug 2021

Regulation Of Lung Mesenchymal Cells By Epithelial Wnt Ligands, Odemaris Narvaez Del Pilar

Dissertations & Theses (Open Access)

The mesenchyme comprises of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling. Despite such importance, mesenchymal cells are poorly defined morphologically and molecularly. Their signaling regulation is not well understood, lagging their counterparts in the epithelial, endothelial, and immune lineages. Leveraging single-cell RNA-seq, three-dimensional imaging, and lineage tracing, first, we delineated different lung mesenchymal cell types and classified them into three-proximal-distal axes in the neonatal and adult murine lung. Each axis is associated to the structure they support – the endothelium, epithelium and interstitium. We also identified two subpopulations of neonatal lung myofibroblasts – ductal …


Deciphering The Perpetual Fight Between Virus And Host: Utilizing Bioinformatics To Elucidate The Host's Genetic Mechanisms That Influence Jc Polyomavirus Infection, Michael P. Wilczek Aug 2021

Deciphering The Perpetual Fight Between Virus And Host: Utilizing Bioinformatics To Elucidate The Host's Genetic Mechanisms That Influence Jc Polyomavirus Infection, Michael P. Wilczek

Electronic Theses and Dissertations

JC polyomavirus (JCPyV) is a human-specific pathogen that infects 50-80% of the population, and can cause a deadly, demyelinating disease, known as progressive multifocal leukoencephalopathy (PML). In most of the population, JCPyV persistently infects the kidneys but during immunosuppression, it can reactivate and spread to the central nervous system (CNS), causing PML. In the CNS, JCPyV targets two cell types, astrocytes, and oligodendrocytes. Due to the hallmark pathology of oligodendrocyte lysis observed in disease, oligodendrocytes were thought to be the main cell type involved during JCPyV infection. However, recent evidence suggests that astrocytes are targeted by the virus and act …


Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson Aug 2021

Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson

Dissertations & Theses (Open Access)

The human genome is under constant threat from sources of damage and stress. Improper resolution of DNA damage lesions can lead to mutations, oncogene activation, and genomic instability. Difficult-to-replicate-loci present barriers to DNA replication that, when not properly resolved, lead to replication fork stalling and collapse and genomic instability.

DNA damage and replication stress trigger signaling cascades potentiated by multiple types of post-translational modifications, including SUMOylation. Through proteomic analysis of proteins involved in SUMOylation following DNA damage, our lab identified an uncharacterized protein that we named New Player in SUMO-dependent DNA damage repair 4 (NPSD4). Through an additional proteomic screen, …


Analysis Of The Role Of Akirin Interactions With Nuclear Body Proteins During Myogenesis, Laura Yorke Jul 2021

Analysis Of The Role Of Akirin Interactions With Nuclear Body Proteins During Myogenesis, Laura Yorke

Master of Science in Integrative Biology Theses

Akirin is a highly conserved, small nuclear protein of indeterminate structure ubiquitously expressed in non-fungal eukaryotic species. It was first discovered in the innate immune response, but many other functions have since been found, including embryonic muscle patterning and myogenesis. Animals with either nonfunctional or missing Akirin have aberrations in embryonic muscle patterning, along with other defects. Akirin interacts with transcription factors such as Twist to coordinate development through interfacing between Twist and other complexes, such as the Brahma Chromatin Remodeling Complex (BRM). Therefore, Akirin likely plays a general role in transcription during early development, interfacing with other transcriptional machinery …


Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina Jun 2021

Temperature Regulation Of Plant Hormone Signaling During Stress And Development, Christian Castroverde, Damaris Dina

Biology Faculty Publications

Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview …


Analysis Of Symptom Expressions And Transmission Rates Caused By The Plant Pathogen Phytophthora Ramorum On Native Chaparral Plants From The Genus Arctostaphylos, Bharati Gaonker May 2021

Analysis Of Symptom Expressions And Transmission Rates Caused By The Plant Pathogen Phytophthora Ramorum On Native Chaparral Plants From The Genus Arctostaphylos, Bharati Gaonker

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Phytophthora ramorum is the causal agent of Sudden Oak death (SOD), ramorum dieback and ramorum leaf blight which affect both forest environments and nurseries. This oomycete pathogen has had a huge economic impact on the nursery and lumber industry. Forests in California have experienced substantial mortality of oaks affecting the forest dynamics and diversity. Our research investigates four native species and two ornamental cultivars of plants, which belong to the genus Arctostaphylos (manzanita) and are considered to be new hosts for P. ramorum in the chaparral ecosystem of California. Symptom expression and transmission rates were analyzed on Arctostaphylos glauca, …


A Forward Genetic Screen To Identify Human Genes Of Interest And Their Roles In Ovarian Cancer, Susan A. Ihejirika May 2021

A Forward Genetic Screen To Identify Human Genes Of Interest And Their Roles In Ovarian Cancer, Susan A. Ihejirika

Honors College Theses

Drosophila melanogaster, fruit flies, are very important for modeling and studying human diseases. This study identifies human genes of interest and their contributions to epithelial ovarian carcinogenesis and progression as well as the roles orthologs of these genes play in Drosophila melanogaster. This is important because ovarian cancer is the most common cause of death among the gynecological cancers. This identification of genes was carried out using a forward genetic screen employing the widely used GMR-Gal4 driver/UAS-transgene system. The GMR-Gal4 driver is commonly utilized to express transgenes in the developing eye of the fruit fly. Transgenes that are expressed using …


Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He May 2021

Identifying The Cell Composition And Clonal Diversity Of Supratentorial Ependymoma Using Single Cell Rna-Sequencing, James He

University Scholar Projects

Ependymoma is a primary solid tumor of the central nervous system. Supratentorial ependymoma (ST-EPN), a subtype of ependymomas, is driven by an oncogenic fusion between the ZFTA and RELA genes in 70% of cases. We introduced this fusion into neural progenitor cells of mice embryos via in utero electroporation of a non-viral binary piggyBac transposon system containing ZFTA-RELA. From preliminary data in the LoTurco lab, inducing the expression of ZFTA-RELA into different neural progenitor cells produces tumors of varying lethality and cellular composition. To define the cellular composition and subclonal diversity of ST-EPN tumors, we used single cell RNA-sequencing to …


The Genetic Basis Of Adaptation To Environmental Stress In Two Grass Genomic Model Systems, David Mitchell Goad May 2021

The Genetic Basis Of Adaptation To Environmental Stress In Two Grass Genomic Model Systems, David Mitchell Goad

Arts & Sciences Electronic Theses and Dissertations

Plants are exposed to a wide variety of environmental stress in the wild and have developed an equally diverse set of adaptations to tolerate them. The evolutionary processes that have led to this functional diversification, and the specific genes and physiological mechanisms involved, are of immense interest to both evolutionary biologists and crop breeders. In this dissertation I investigate adaptation to different types of environmental stress in two economically important grass species, seashore paspalum (Paspalum vaginatum Sw.) and rice (Oryza sativa L.).

Seashore paspalum is a halophytic turfgrass that occupies habitats which can dramatically differ in salt concentration. Populations may …


Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez May 2021

Comprehensive Characterization Of The Genetic And Neoantigen Landscapes Of Follicular Lymphoma Patients Supports The Feasibility Of Personalized Cancer Vaccine Treatments, Cody Alexander Ramirez

Arts & Sciences Electronic Theses and Dissertations

Follicular lymphoma (FL) is the most common indolent non-Hodgkin’s lymphoma; however, it remains incurable with conventional therapies and is poorly responsive to checkpoint blockade. FL arises from B-lymphocytes and develops slowly (and often asymptomatically). A major research focus has been on how to avoid chemotherapy treatments, to limit the potential development of treatment-related side effects, and the risk of therapy-related second cancers. FL also carries an approximately 30% lifetime risk of transforming from an iNHL to more destructive lymphomas, which are associated with poorer prognosis. The most common transformation results in diffuse large B-cell lymphoma (DLBCL). However, many patients may …


Transcriptional Control Of Dendritic Cell Function And Development, David Alexander Anderson Iii May 2021

Transcriptional Control Of Dendritic Cell Function And Development, David Alexander Anderson Iii

Arts & Sciences Electronic Theses and Dissertations

Dendritic cells (DCs) are innate immune cells of the myeloid lineage that are specialized at pathogen recognition, cytokine production, and antigen presentation. Their functions and developmental pathways are largely conserved between mice and humans and mice. The DC lineage is composed of two major subsets, known as plasmacytoid DCs (pDCs) and classical DCs (cDCs). Research conducted to date suggests that the function of pDCs, limited to viral antigen recognition and type I interferon production, can be compensated by other immune cell lineages. On the other hand, there is a consensus that diversified subsets cDCs in mice and humans are essential …


Regulation Of Genome Architecture By Chromatin Remodeling In The Brain, Jared Vega Goodman May 2021

Regulation Of Genome Architecture By Chromatin Remodeling In The Brain, Jared Vega Goodman

Arts & Sciences Electronic Theses and Dissertations

Brain development requires exquisite control of gene expression to establish and refine the proper circuitry of the nervous system. Gene expression control is under the purview of several cellular processes, including chromatin regulation in the form of DNA modification, histone modification, and nucleosome remodeling. Chromatin remodeling enzymes are the major effectors of nucleosome remodeling. These enzymes are clearly involved in brain development – mutations in chromatin remodeling enzymes are likely causative for neurodevelopmental disorders of cognition. Chromatin remodeling enzymes have discrete molecular functions and binding profiles and similarly control distinct phases of nervous system maturation. Chd4 is a Chd family …


Single-Cell Resolution Mechanistic Analyses Of Direct Lineage Reprogramming, Chuner Guo May 2021

Single-Cell Resolution Mechanistic Analyses Of Direct Lineage Reprogramming, Chuner Guo

Arts & Sciences Electronic Theses and Dissertations

End-stage organ failures remain a clinical challenge with an unmet need for medical therapies, with transplantation often being the only curative option. Despite advances in transplantation outcomes, organ shortage continues to limit the availability of cures to patients in need. The direct lineage reprogramming of one cell type to another is a promising avenue for therapy with the following advantages: (1) patient-specific cell sources, (2) direct conversion without reverting to pluripotency and the associated risk of teratoma formation, and (3) utilization of the cell type responsible for fibrotic scar formation for the engineering towards the desired cell fate. Nonetheless, many …


The Phylogeography Of Rare Central Tennessee Glade Endemics Trifolium Calcaricum And Viola Egglestonii, Rachel Ann Lyman May 2021

The Phylogeography Of Rare Central Tennessee Glade Endemics Trifolium Calcaricum And Viola Egglestonii, Rachel Ann Lyman

Arts & Sciences Electronic Theses and Dissertations

Endemic species are range-restricted to a particular type of habitat and generally occur in a few small populations. Often endemic species are threatened or endangered due to their geographic isolation and limited habitat breadth. Despite the fact that understanding factors that may have shaped the evolutionary history of a species with a narrow distribution can provide important insights for their management and conservation, little is known about the historical forces that gave rise to many endemic species. Endemic species can arise because of factors such as variation in climate, geographic barriers, and habitat specificity, or the combination of several of …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

University Scholar Projects

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


Mapping And Characterization Of Mutagen Sensitivity Genes In Drosophila Malanogaster, Alexis Nystrom May 2021

Mapping And Characterization Of Mutagen Sensitivity Genes In Drosophila Malanogaster, Alexis Nystrom

Graduate Theses

The information contained within DNA is vital to directing all biological processes. All organisms have repair mechanisms in place to repair DNA damage quickly and efficiently. Without these repair pathways, DNA can acquire harmful mutations that can compromise the survival of an organism. Studies of DNA repair in Drosophila melanogaster have focused on mutagen sensitive (mus) mutants, each of which contain a mutation that renders them incapable of performing DNA repair. Since a majority of these mus genes are unmapped, the goal of this project was to determine what genes in the Drosophila melanogaster genome are mus106 and mus108. Presence …