Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Cell and Developmental Biology

The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr. Jun 2022

The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr.

Honors Scholar Theses

FOP is a rare genetic disorder in which skeletal muscle and associated connective tissue progressively turn to bone through a process called heterotopic ossification (HO). The extra skeletal bone growth is cumulative, eventually trapping patients in a second skeleton that eventually leads to death by asphyxiation. The FOP mutation is autosomal dominant that can be inherited or acquired sporadically. Unfortunately, FOP is currently incurable with no therapeutic options to inhibit bone growth or reduce existing bone nodules. My project intends to further our understanding of the cellular mechanisms of the disease within the tongue muscle. A population of cells known …


The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr. Jun 2022

The Effect Of Fibrodysplasia Ossificans Progressiva On The Tongue, Amy Backal, Amanda Harrop, David J. Goldhamer Dr.

University Scholar Projects

FOP is a rare genetic disorder in which skeletal muscle and associated connective tissue progressively turn to bone through a process called heterotopic ossification (HO). The extra skeletal bone growth is cumulative, eventually trapping patients in a second skeleton that eventually leads to death by asphyxiation. The FOP mutation is autosomal dominant that can be inherited or acquired sporadically. Unfortunately, FOP is currently incurable with no therapeutic options to inhibit bone growth or reduce existing bone nodules. My project intends to further our understanding of the cellular mechanisms of the disease within the tongue muscle. A population of cells known …


When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha May 2022

When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha

University Scholar Projects

While we often perceive disease as negative, there is potential to engineer seemingly negative biological phenomena into therapeutics to treat a variety of human illnesses. Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder involving uncontrolled, widespread, extraskeletal bone growth, or heterotopic ossification (HO). In FOP patients, stem cells called fibro/adipogenic progenitors (FAPs) follow an abnormal, osteogenic pathway. In the present study, we investigate whether we can adapt these Acvr1 mutant FAPs, which are exceptional at producing bone, to repair bone fractures in otherwise normal patients. The primary aims of this study are (1) to devise and optimize a novel method …


When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha May 2022

When Problems Become Solutions: Harnessing The Osteogenic Capacity Of Disease-Causing Stem Cells To Repair Bone Fractures, Mehreen Pasha

Honors Scholar Theses

While we often perceive disease as negative, there is potential to engineer seemingly negative biological phenomena into therapeutics to treat a variety of human illnesses. Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder involving uncontrolled, widespread, extraskeletal bone growth, or heterotopic ossification (HO). In FOP patients, stem cells called fibro/adipogenic progenitors (FAPs) follow an abnormal, osteogenic pathway. In the present study, we investigate whether we can adapt these Acvr1 mutant FAPs, which are exceptional at producing bone, to repair bone fractures in otherwise normal patients. The primary aims of this study are (1) to devise and optimize a novel method …


Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte May 2017

Lymphoid Hematopoiesis And The Role Of B-Cells In Transgenic Mouse Model Of Sickle Cell Disease, Christina Cotte

University Scholar Projects

Sickle cell disease (SCD) has been shown to be associated with decreased baseline immunity and thus increased susceptibility to infection. I sought to discern possible causes of this by looking into the correlations between SCD and hematopoiesis, the immune system and the neuroendocrine system, and ultimately by conducting experiments surrounding the impaired immune system of SCD. These experiments focused on the potential causes and effects of the diminution of B-1a cells in the SCD spleen. Adoptive transfers, infections with Streptococcus pneumoniae, and histologic imaging were conducted to establish if the diminution of the B-1a cells in the SCD spleen …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

University Scholar Projects

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …


Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer May 2014

Modeling The Adaptive Immune Response To Mutation-Generated Antigens, Rory J. Geyer

Honors Scholar Theses

Somatic mutations may drive tumorigenesis or lead to new, immunogenic epitopes (neoantigens). The immune system is thought to represses neoplastic growths through the recognition of neoantigens presented only by tumor cells. To study mutations as well as the immune response to mutation-generated antigens, we have created a conditional knockin mouse line with a gene encoding, 5’ to 3’, yellow fluorescent protein (YFP), ovalbumin (which is processed to the immunologically recognizable peptide, SIINFEKL), and cyan fluorescent protein (CFP), or, YFP-ovalbumin-CFP. A frame shift mutation has been created at the 5’ end of the ovalbumin gene, hence YFP should always be expressed, …