Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 44

Full-Text Articles in Cell and Developmental Biology

Genetic Regulation Of Müllerian Duct Regression, Malcolm Moses May 2023

Genetic Regulation Of Müllerian Duct Regression, Malcolm Moses

Dissertations & Theses (Open Access)

Mammals, including humans, develop progenitor tissues for both male and female reproductive tract organs before they fully differentiate into a male or female tract. The progenitor tissue for the male reproductive tract is known as the Wolffian duct (WD), and the progenitor tissue for the female reproductive tract is the Müllerian duct (MD). The WD further differentiates into the vas deferens, epididymis, and seminal vesicle, while the MD differentiates into the oviduct, uterus and upper vagina. An essential step in sex differentiation for males is the regression of the MD. This regression initiates with anti-Müllerian hormone (Amh) transcription …


Functional Analysis Of Daxx In Tumorigenesis Of Pancreatic Neuroendocrine Tumors And Embryonic Development, Chang Sun May 2023

Functional Analysis Of Daxx In Tumorigenesis Of Pancreatic Neuroendocrine Tumors And Embryonic Development, Chang Sun

Dissertations & Theses (Open Access)

Death domain-associated protein 6 (Daxx) is a histone chaperone specific to Histone 3.3 (H3.3). DAXX interacts with ATRX forming a chromatin remodeling complex, which deposits H3.3 into telomeric and pericentric region of the genome. The importance of Daxx was manifested in embryonic development. The loss of Daxx leads to early lethality in mouse embryos around E6.5. Moreover, sequencing studies have revealed the importance of DAXX in human tumors. Mutually exclusive mutations in DAXX and ATRX occur in about 30% of pancreatic neuroendocrine tumors (PanNETs). Although lots of progress has been made in studying functions of DAXX, we still do not …


Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing May 2023

Adipocytes And Innate Immunity In Systemic Sclerosis, Nancy Wareing

Dissertations & Theses (Open Access)

Systemic sclerosis (SSc; scleroderma) is a chronic systemic autoimmune and connective tissue disorder characterized by vasculopathy, autoimmune phenomena, and widespread fibrosis. Skin thickening and tightening is the cardinal feature of SSc and is responsible, in part, for the considerable morbidity of this disease. There are currently no targeted treatments for skin manifestations in SSc, primarily due to our fragmented understanding of its pathophysiologic mechanisms. In PART I, we report a previously unappreciated link between aberrant expression of the developmental gene sine oculis homeobox homolog 1 (SIX1) in skin-associated adipocytes in SSc skin and the early loss of dermal white adipose …


The Adar-Mavs Pathway Is A Critical Mediator Of The Innate Immune System In Pancreatic Development And Cancer, Dhwani Rupani Dec 2022

The Adar-Mavs Pathway Is A Critical Mediator Of The Innate Immune System In Pancreatic Development And Cancer, Dhwani Rupani

Dissertations & Theses (Open Access)

Adenosine deaminase acting on RNA (ADAR) is an RNA-binding protein that deaminates adenosine (A) to inosine (I). A-to-I editing is an important post-transcriptional mechanism to prevent recognition of endogenous RNA by MDA5, a cytosolic RNA sensor. Activation of MDA5 by viral RNA can stimulate the innate immune system. Thus, ADAR-mediated RNA editing is crucial to distinguish “self” from “non-self”. ADAR has an important role in gene regulation as A-to-I editing alters RNA processing affecting both RNA and protein abundance. Given its importance in regulating innate immunity and transcript abundance, aberrations in Adar expression are implicated in developmental deformities and carcinogenesis. …


The Novel Role Of Dnmbp In Kidney Development, Brandy Walker Aug 2022

The Novel Role Of Dnmbp In Kidney Development, Brandy Walker

Dissertations & Theses (Open Access)

Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for nearly one-fourth of all birth defects and more than 40% of pediatric end-stage renal disease, yet only 10-20% of CAKUT cases have a known monogenetic cause. Human kidneys are composed of up to a million epithelial tubules called nephrons. Disruption of nephron development is one of the many congenital anomalies that cause CAKUT, often resulting in chronic or end-stage renal disease which requires transplant. During nephron epithelialization, the formation of stable cadherin-mediated adhesion junctions is essential for maintaining cell-cell contacts. To understand the cell behaviors underlying abnormalities in renal …


Genetic Pathway Analysis Of Abnormal Facial Development In Nonsyndromic Cleft Lip And Palate, Lorena Maili May 2021

Genetic Pathway Analysis Of Abnormal Facial Development In Nonsyndromic Cleft Lip And Palate, Lorena Maili

Dissertations & Theses (Open Access)

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is the most common craniofacial birth defect resulting from incomplete fusion of the facial prominences during development, which leaves a gap in the lip, primary palate and/or the secondary palate. NSCLP affects 135,000 NSCLP newborns worldwide each year based on a birth prevalence of 1 per 700 live births. While surgical treatments have dramatically improved, many long-term health issues persist, imposing significant medical, psychosocial and economic burdens. Familial aggregation and segregation analyses suggest genetic contributions underlie NSCLP, but despite decades of study, only a small portion of the NSCLP genetic liability …


The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little Dec 2020

The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little

Dissertations & Theses (Open Access)

Lineage transcription factors mark, promote, and maintain multiple distinct cell types originating from a common progenitor. Despite their essential role, how such factors function and bind genome wide to orchestrate the epigenetic changes necessary to form and maintain these identities in vivo is unclear. One lineage transcription factor NK Homeobox 2-1 (NKX2-1) is expressed throughout the lung epithelium during development and was thought to be lost in the extraordinarily thin cell type required for gas exchange– the alveolar type 1 (AT1) cell. Complementing precise genetic knockouts with cell type-specific ChIP-seq, ATAC-seq, and scRNA-seq, our study shows that AT1 and AT2 …


The Role Of Daam1 In Kidney Development, Vanja Krneta-Stankic Dec 2020

The Role Of Daam1 In Kidney Development, Vanja Krneta-Stankic

Dissertations & Theses (Open Access)

Kidneys, like most organs in our bodies, consist of a network of epithelial tubules. Kidney tubules are called nephrons, and their morphology is important for kidney function. Nephrons develop from mesodermally derived aggregates of progenitor cells. The nephric progenitors organize into nephric tubules lined with hair-like sensory projections called cilia. Many diseases of the kidney are characterized by abnormal nephron morphology with current treatment aimed at symptom control. To understand the mechanisms underlying kidney diseases and achieve the development of novel therapies, a better understanding of how nephrons develop is needed. Although the actin cytoskeleton is critical for cell behaviors …


The Role Of Daam1 In Kidney Development, Vanja Krneta-Stankic Dec 2020

The Role Of Daam1 In Kidney Development, Vanja Krneta-Stankic

Dissertations & Theses (Open Access)

Kidneys, like most organs in our bodies, consist of a network of epithelial tubules. Kidney tubules are called nephrons, and their morphology is important for kidney function. Nephrons develop from mesodermally derived aggregates of progenitor cells. The nephric progenitors organize into nephric tubules lined with hair-like sensory projections called cilia. Many diseases of the kidney are characterized by abnormal nephron morphology with current treatment aimed at symptom control. To understand the mechanisms underlying kidney diseases and achieve the development of novel therapies, a better understanding of how nephrons develop is needed. Although the actin cytoskeleton is critical for cell behaviors …


Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon Aug 2020

Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon

Dissertations & Theses (Open Access)

Genetic engineering has been re-shaped by the invention of new tools in modern biotechnology in a way that offers precision and efficiency in modifying the genome at a single nucleotide level and/or allowing precise control of gene expression. Such gene manipulation brings about significant findings and revelations in comprehending more about embryonic development, cellular and physiological functions, and disease pathology. Current methods used to produce conditional knockouts have limitations on conditional allele placement and modification varies among genes in different organisms. Thus, a system for generating conditional alleles with fidelity remains a challenge. My goal was to examine an approach …


Platiscity Of C. Elegans Germline Stem Cells Under Nutritional And Metabolic Stress, Kenneth Trimmer May 2019

Platiscity Of C. Elegans Germline Stem Cells Under Nutritional And Metabolic Stress, Kenneth Trimmer

Dissertations & Theses (Open Access)

Stem cells are integral for tissue maintenance and fertility. Therefore, understanding how stem cells are regulated under stress is imperative. When confronted with acute starvation, stem cells must conserve energy and metabolites to cope with the lack of an external source. Caenorhabditis elegans germline stem cells (GSCs) are an excellent model for studying stem cell properties and regulation as they can divide throughout the life of the organism. While GSCs are an adult stem cell population, their cell cycle structure more closely mimics mouse and human embryonic stem cells with short G1 and long S phases. In this thesis, I …


Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal May 2018

Phosphorylation Impairs Dicer1 Function To Accelerate Aging And Tumorigenesis In Vivo, Neeraj Aryal

Dissertations & Theses (Open Access)

Altered DICER1 protein levels are associated with developmental disorders, infertility, macular degenerative blindness, aging, and cancer in humans. Recently, post-translational regulation of Dicer1 via phosphorylation has been described in C. elegans. Oscillation of Dicer1 phosphorylation to regulate its activity is essential for germ cell development and embryogenesis in worms. These observations led us to posit that Dicer1 protein levels and activity are under tight regulation for normal mammalian homeostasis. To test whether phosphorylation of Dicer1 regulates its activity in mammals, I generated phospho-mimetic knock-in mouse models by replacing Serines 1712 and 1836 with Aspartic acids individually or together (dual …


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

Dissertations & Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo. …


Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez Aug 2016

Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez

Dissertations & Theses (Open Access)

Cancer is one of the leading causes of death and disease in the world. Considerable resources are spent to study and understand cancer, with the hope of developing new treatments and eventually cures that will help millions of people. Efforts to understand cancer are hindered by its inherent complexity and instability. Nonetheless, understanding the basics of tumor development and progression are the key to focused on studying the role of ΔNp63 in cancer, a p53 family member known to be involved in epithelial development, microRNA biogenesis, and stem cell maintenance. Using the strength of in vivo mouse models, we found …


Genome Engineering: Drosophila Melanogaster And Beyond., Kjt Venken, A Sarrion-Perdigones, Pj Vandeventer, Ns Abel, Ae Christiansen, Kl Hoffman Mar 2016

Genome Engineering: Drosophila Melanogaster And Beyond., Kjt Venken, A Sarrion-Perdigones, Pj Vandeventer, Ns Abel, Ae Christiansen, Kl Hoffman

Faculty Publications

A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple …


Defining The Molecular Networks Necessary For Thymus Fate And Organogenesis, Kaitlin A. Reeh Dec 2015

Defining The Molecular Networks Necessary For Thymus Fate And Organogenesis, Kaitlin A. Reeh

Dissertations & Theses (Open Access)

The thymus and parathyroid (PT) glands originate from endodermal progenitors in the bilateral third pharyngeal pouches (3rd pps). By E11.5 during mouse development, cells committed to the thymus lineage express Foxn1 whereas PT-fated cells express Gcm2. While these transcription factors are required for organ-specific differentiation, the exact molecular mechanisms that specify endodermal progenitors to either the thymus or parathyroid lineage are not well defined. Tbx1 is initially expressed throughout the 3rd pp endoderm, as it is required for segmentation of the pharyngeal apparatus, but is downregulated in the thymus-fated domain by E10.5. Despite the widely held notion …


Merlin Mediated Regulation Of Hair Follicle Morphogenesis, Megan K. Fentress Aug 2015

Merlin Mediated Regulation Of Hair Follicle Morphogenesis, Megan K. Fentress

Dissertations & Theses (Open Access)

Epidermal homeostasis is paramount for the ongoing function of the skin as the primary barrier between a mammalian organism and the external environment. Homeostasis is achieved through a complex and delicate balance of cell death, cell proliferation and cell differentiation. Critical for regeneration and maintenance of the skin are epidermal stem cells. Within the epidermis two distinct stem cell compartments exist, the bulge and interfollicular/basal stem cell niches, which play a central role in the regeneration of the epidermis through self-renewal and contribution to the differentiated cells of the epidermis. The bulge stem cell niche is established early in epidermal …


Impact Of Differentiation Status Of Kidney Progenitors In Wilms Tumor Development, Le Huang May 2015

Impact Of Differentiation Status Of Kidney Progenitors In Wilms Tumor Development, Le Huang

Dissertations & Theses (Open Access)

Wilms tumor is one of the most common solid tumors in children. It is an embryonic cancer of the kidney and is thought to arise from undifferentiated renal mesenchyme. However, the differentiation status of cells in the mesenchyme that can give rise to Wilms tumors is unknown. Gene expression analysis of a large panel of Wilms tumor patients has identified different subsets of Wilms tumors that are distinct in their clinical outcomes and gene expression signatures. These subsets express specific genes that correspond to different stages of differentiation during renal development, suggesting that Wilms tumors may arise from transformed cells …


Elucidating The Role Of Rumi And O-Glucosylation In The Drosophila Eye, Amanda Haltom May 2015

Elucidating The Role Of Rumi And O-Glucosylation In The Drosophila Eye, Amanda Haltom

Dissertations & Theses (Open Access)

Rumi is a protein O-glucosyltransferase that adds the sugar O-glucose onto the serine in the target sequence C-S-X-S-(P/A)-C found within properly folded EGF repeats. It was first discovered to modify the Drosophila Notch extracellular domain and to be required for Notch signaling in a temperature dependent manner, but other targets of Rumi remained unknown. Several other proteins in the Drosophila proteome harbor multiple consensus sequence highly predictive of O-glucose, including the transmembrane protein Crumbs and the secreted protein Eyes shut (Eys). Both of these proteins are required for proper eye development and mutations in their human homologs …


Sox2-Dependent Transcriptional Control Of Airway Differentiation In The Mouse Lung, Belinda J. Hernandez Dec 2014

Sox2-Dependent Transcriptional Control Of Airway Differentiation In The Mouse Lung, Belinda J. Hernandez

Dissertations & Theses (Open Access)

The lung is a highly branched tree-like tubular system that results from more than 20 generations of the conducting airways and consists of 300 million alveoli for gas exchange. Airway branches form via branching morphogenesis and then mature into conducting airways, in which the number and distribution of different cell types need to be precisely controlled. The conducting airways contain four lung cell types: club cells, ciliated cells, basal cells, and neuroendocrine cells.SOX2 is a well-known conducting airway marker. SOX2 is a transcription factor that is known to be important in embryonic development and induction of pluripotent stem cells. We …


P120-Catenin Regulates Rest And Corest, And Modulates Mouse Embryonic Stem Cell Differentiation, Moonsup Lee Dec 2014

P120-Catenin Regulates Rest And Corest, And Modulates Mouse Embryonic Stem Cell Differentiation, Moonsup Lee

Dissertations & Theses (Open Access)

The canonical-Wnt pathway and beta-catenin have been extensively studied to determine their contributions to stem cell biology, but less is known about p120-catenin in the nuclear compartment. P120 is developmentally required as a consequence of its biochemical and functional interactions with cadherins, small-GTPases and transcriptional regulators. We report here that p120-catenin binds to and negatively regulates REST and CoREST, that others have indicated form a repressive complex having diverse key roles in developmental and pathologic gene regulation. We thus provide the first evidence for a direct upstream modulator of REST/CoREST function. Using mouse embryonic stem cells (mESCs), mammalian cell lines, …


Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen Oct 2014

Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen

Faculty Publications

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of …


P53 Maintains Hepatic Cell Identity During Liver Regeneration, Zeynep Hande Coban Akdemir May 2014

P53 Maintains Hepatic Cell Identity During Liver Regeneration, Zeynep Hande Coban Akdemir

Dissertations & Theses (Open Access)

p53 MAINTAINS HEPATIC CELL IDENTITY DURING LIVER REGENERATION

Zeynep Hande Coban Akdemir, B.S.,M.A.

Advisory Professor: Michelle Craig Barton, Ph.D.

p53 is a tumor suppressor that has been well studied in tumor-derived, cultured cells. However, its functions in normal proliferating cells and tissues are generally overlooked. We propose that p53 functions during the G1-S transition can be studied in normal, differentiated cells during surgery-induced liver regeneration. Two-thirds partial hepatectomy (PH) of mouse liver offers a unique model to compare p53 functions in regenerating versus sham (control) cells. My hypothesis is that intersection of global expression analyses (microarray and RNA sequencing) and …


Regulation Of Mammary Gland Development And Tumorigenesis By 14-3-3 Zeta, Sumaiyah Rehman May 2014

Regulation Of Mammary Gland Development And Tumorigenesis By 14-3-3 Zeta, Sumaiyah Rehman

Dissertations & Theses (Open Access)

Signaling pathways that play critical roles in organ development are often aberrantly regulated during cancer initiation and progression. 14-3-3z is overexpressed in more than 40% of breast cancers and is associated with poor patient prognosis. Therefore, the function of 14-3-3z in cancer and normal mammary gland development was investigated utilizing multiple in vivo and in vitro approaches. 14-3-3z is a chaperone protein that interacts with a multitude of oncogenes and tumor suppressor genes, thereby functioning as a critical node in multiple oncogenic signaling networks. Mammary gland-specific 14-3-3z transgenic mouse models showed that 14-3-3z overexpression was sufficient to induce mammary tumorigenesis. …


Characterization Of Ftsa-Ftsn Interaction During Escherichia Coli Cell Division, Kimberly.Busiek@Gmail.Com K. Busiek May 2014

Characterization Of Ftsa-Ftsn Interaction During Escherichia Coli Cell Division, Kimberly.Busiek@Gmail.Com K. Busiek

Dissertations & Theses (Open Access)

Division of a bacterial cell into two equal daughter cells requires precise assembly and constriction of the division machinery, or divisome. The Escherichia coli divisome includes nearly a dozen essential cell division proteins that assemble at midcell between segregating sister chromosomes. FtsZ, a homolog of eukaryotic tubulin, is the first essential cell division protein to localize at midcell where it polymerizes into a ring-shaped scaffold (Z ring). Establishment of the Z ring is required for recruitment of downstream cell division proteins including FtsA, a cytoplasmic protein that tethers the Z ring to the inner membrane. Following localization of FtsA and …


Developmental And Molecular Functions Of Plakophilin-3, William A. Munoz Dec 2013

Developmental And Molecular Functions Of Plakophilin-3, William A. Munoz

Dissertations & Theses (Open Access)

Plakophilin-3, the less studied member of the plakophilin-catenin subfamily, and the larger catenin family, binds directly to desmosomal cadherin cytoplasmic domains and enhances desmosome formation and stability. In mammals, plakophilin-3 is expressed at the highest levels in desmosome-enriched tissues such as epithelia, with the knock-out in mice producing corresponding reductions in ectodermal integrity. In tissue, cellular and intracellular contexts where plakophilin-3 is not at the desmosomal plaque, little is known about its functions in the cytoplasm or nucleus, where it also localizes.

My work employed embryos of the amphibian, Xenopus laevis, to examine plakophilin-3’s developmental roles. I first evaluated …


Genetic Analysis Of The Hippo Pathway In Mouse Liver, Li Lu Dec 2012

Genetic Analysis Of The Hippo Pathway In Mouse Liver, Li Lu

Dissertations & Theses (Open Access)

Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing …


Identification And Analysis Of A Novel Role For The Tousled-Like Kinase In Regulating Mitotic Spindle Dynamics, Jason R. Ford Aug 2012

Identification And Analysis Of A Novel Role For The Tousled-Like Kinase In Regulating Mitotic Spindle Dynamics, Jason R. Ford

Dissertations & Theses (Open Access)

Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes.

I discovered an unanticipated requirement for TLK-1 …


Transcriptional Regulation Of Profilin Is Required For Drosophila Larval Wound Closure, Amanda Brock Aug 2012

Transcriptional Regulation Of Profilin Is Required For Drosophila Larval Wound Closure, Amanda Brock

Dissertations & Theses (Open Access)

Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways (the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway) and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound- induced cell migrations. Here we show that chickadee, which encodes …


Enforced Expression Of Tbx1 In Fetal Thymic Epithelial Cells Antagonizes Thymus Organogenesis, Kim T. Cardenas Aug 2011

Enforced Expression Of Tbx1 In Fetal Thymic Epithelial Cells Antagonizes Thymus Organogenesis, Kim T. Cardenas

Dissertations & Theses (Open Access)

Enforced expression of Tbx1 in fetal thymic epithelial cells antagonizes

thymus organogenesis

Kim T. Cardenas

The thymus and parathyroid glands originate from organ-specific domains of 3rd pharyngeal pouch (PP) endoderm. At embryonic day 11.5 (E11.5), the ventral thymus and dorsal parathyroid domains can be identified by Foxn1 and Gcm2 expression respectively. Neural crest cells, (NCCs) play a role in regulating patterning of 3rd PP endoderm. In addition, pharyngeal endoderm influences fate determination via secretion of Sonic hedgehog (Shh), a morphogen required for Gcm2 expression and generation of the parathyroid domain. Gcm2 is a downstream target of the transcription factor Tbx1, …