Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Cell and Developmental Biology

A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyag Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu Jan 2023

A Single-Cell Atlas Of Bovine Skeletal Muscle Reveals Mechanisms Regulating Intramuscular Adipogenesis And Fibrogenesis, Leshan Wang, Peidong Gao, Chaoyag Li, Qianglin Liu, Zeyang Yao, Yuxia Li, Xujia Zhang, Jiangwen Sun, Constantine Simintiras, Matthew Welborn, Kenneth Mcmillin, Stephanie Oprescu, Shihuan Kuang, Xing Fu

Computer Science Faculty Publications

Background: Intramuscular fat (IMF) and intramuscular connective tissue (IMC) are often seen in human myopathies and are central to beef quality. The mechanisms regulating their accumulation remain poorly understood. Here, we explored the possibility of using beef cattle as a novel model for mechanistic studies of intramuscular adipogenesis and fibrogenesis.

Methods: Skeletal muscle single-cell RNAseq was performed on three cattle breeds, including Wagyu (high IMF), Brahman (abundant IMC but scarce IMF), and Wagyu/Brahman cross. Sophisticated bioinformatics analyses, including clustering analysis, gene set enrichment analyses, gene regulatory network construction, RNA velocity, pseudotime analysis, and cell-cell communication analysis, were performed to elucidate …


Non-Canonicaly Recruited Tcrαβcd8Αα Iels Recognize Microbial Antigens, Lukasz Wojciech, Edyta Szurek, Michal Kuczma, Anna Cebula, Wessam R. Elhefnawy, Maciej Pietrzak, Grzegorz Rempala, Leszek Ignatowicz Jan 2018

Non-Canonicaly Recruited Tcrαβcd8Αα Iels Recognize Microbial Antigens, Lukasz Wojciech, Edyta Szurek, Michal Kuczma, Anna Cebula, Wessam R. Elhefnawy, Maciej Pietrzak, Grzegorz Rempala, Leszek Ignatowicz

Computer Science Faculty Publications

In the gut, various subsets of intraepithelial T cells (IELs) respond to self or non-self-antigens derived from the body, diet, commensal and pathogenic microbiota. Dominant subset of IELs in the small intestine are TCRαβCD8αα+ cells, which are derived from immature thymocytes that express self-reactive TCRs. Although most of TCRαβCD8αα+ IELs are thymus-derived, their repertoire adapts to microbial flora. Here, using high throughput TCR sequencing we examined how clonal diversity of TCRαβCD8αα+ IELs changes upon exposure to commensal-derived antigens. We found that fraction of CD8αα+ IELs and CD4+ T cells express identical …