Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Biotechnology

Revolutionary Advances In The Treatment Of Genetic Disease, Emma Kaitlyn Carrigan Jan 2023

Revolutionary Advances In The Treatment Of Genetic Disease, Emma Kaitlyn Carrigan

Honors Theses and Capstones

No abstract provided.


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


My Summer Working With Two-Spotted Spider Mites, Renée A. Smith Aug 2022

My Summer Working With Two-Spotted Spider Mites, Renée A. Smith

Undergraduate Student Research Internships Conference

Two-spotted spider mites are a polyphagous pest, capable of eating a magnitude of food crops which causes a large problem for Canadian agriculture. Their ability to consume various crops stems from their ability to adapt to various chemical defence mechanisms. This ability allows them to acquire resistance to many commonly used pesticides. This has resulted in large infections in Canadian farms with few options to prevent the pests from affecting crop yields. Take a look at my project if you'd like to see how the Grbic lab is working to combat this issue using genetic engineering techniques!


Understanding The Genetics Of Schizophrenia, Matthew Toohey Apr 2021

Understanding The Genetics Of Schizophrenia, Matthew Toohey

Thinking Matters Symposium

Schizophrenia has been considered heritable for a long time, but only with the advent of new technologies such as whole-genome sequencing and genome-wide association studies can we begin to identify specific molecular causes of schizophrenia. This poster will review some of the genetic variants that research groups have associated with schizophrenia. Current research has indicated that schizophrenia is a polygenic disease and has been linked to many genes. Some of these common risk variants are in protein coding sections of the DNA. These proteins are often linked to neurological development or immune system function. Other variants that have been associated …


Importance Of Understanding Genetic Predisposition, Andrew Carter Apr 2021

Importance Of Understanding Genetic Predisposition, Andrew Carter

Thinking Matters Symposium

Hypersensitivity reactions can be sudden and are often fatal. Many of these reactions occur as a result of allergies to prescribed medication. Adverse drug reactions or (ADR’s) were show in a recent study to affect over 6% of hospitalized patients and resulted in over 100,000 deaths a year in the US alone. This poster will review the importance of understanding genetic predisposition, through articles about possible genetic causes of allergies to penicillin and other beta-lactams. Changes in a specific HLA gene located on chromosome 6 showed a correlation to penicillin reactions in over 600,000 participants. Another study found a conclusive …


Optimization And Validation Of The Neurolux Wireless Optoelectronics System For Optogenetics, Karis Courey, Su Hyun Lee Ph.D., Adam Smith Ph.D., Nicholas Cilz Ph.D., Sarah K. Williams Avram Ph.D., Adi Cymerblit-Sabba Ph.D., June Song, Nicholas Leipzig Ph.D., W. Scott Young M.D., Ph.D. Jan 2020

Optimization And Validation Of The Neurolux Wireless Optoelectronics System For Optogenetics, Karis Courey, Su Hyun Lee Ph.D., Adam Smith Ph.D., Nicholas Cilz Ph.D., Sarah K. Williams Avram Ph.D., Adi Cymerblit-Sabba Ph.D., June Song, Nicholas Leipzig Ph.D., W. Scott Young M.D., Ph.D.

Williams Honors College, Honors Research Projects

Utilizing light and genetic engineering, optogenetics permits the manipulation of events within cells via light using the light-sensitive properties of single-component microbial opsins. Microbial opsins are activated by a light source, such as lasers, light-emitting diodes, and incandescent sources that deliver light to the region of interest either directly or indirectly, such as through fiberoptics. In classical in vivo optogenetics, the wiring of optic fibers necessitates tethering of animals by the optic fiber to the light source. The novel NeuroLux wireless optoelectronic system for optogenetics circumvents issues pertaining to classical optogenetics by utilizing near-field power transfer via magnetic coil antennae …


Functional Analysis Of Synthetic Gene Circuits Controlling A Protein Pump In Yeast, Junchen Diao Aug 2015

Functional Analysis Of Synthetic Gene Circuits Controlling A Protein Pump In Yeast, Junchen Diao

Dissertations & Theses (Open Access)

Synthetic biology aims to build biological devices to understand living systems and explore new applications. Synthetic gene circuits such as genetic switches, oscillators and logic gates are at the core of many synthetic biology applications. These gene circuits often include a sensor/regulator protein capable to detect small molecules and then transduce them into a regulatory signal to generate measurable output. Similar signal transduction networks are also abundant in nature. However, in many natural and engineered scenarios, the output also affects the regulator/sensor protein. How such interactions between the regulator/sensor and the output affect synthetic gene circuit function has not been …


Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill Jul 2014

Metagenomic Identification Of A Novel Salt Tolerance Gene From The Human Gut Microbiome Which Encodes A Membrane Protein With Homology To A Brp/Blh-Family Beta-Carotene 15,15'-Monooxygenase, Eamonn P. Culligan, Roy D. Sleator, Julian R. Marchesi, Colin Hill

Department of Biological Sciences Publications

The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.


Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold Feb 2014

Gene And Protein Sequence Optimization For High-Level Production Of Fully Active And Aglycosylated Lysostaphin In Pichia Pastoris, Hongliang Zhao, Kristina Blazanovic, Yoonjoo Choi, Chris Bailey-Kellogg, Karl E. Griswold

Dartmouth Scholarship

Lysostaphin represents a promising therapeutic agent for the treatment of staphylococcal infections, in particular those of methicillin-resistant Staphylococcus aureus (MRSA). However, conventional expression systems for the enzyme suffer from various limitations, and there remains a need for an efficient and cost-effective production process to facilitate clinical translation and the development of nonmedical applications. While Pichia pastoris is widely used for high-level production of recombinant proteins, there are two major barriers to the production of lysostaphin in this industrially relevant host: lack of expression from the wild-type lysostaphin gene and aberrant glycosylation of the wild-type protein sequence. The first barrier can …


Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza Aug 2010

Development Of Pyrf-Based Genetic System For Targeted Gene Deletion In Clostridium Thermocellum And Creation Of A Pta Mutant, Shital A. Tripathi, Daniel G. Olson, D. Aaron Argyros, Bethany B. Miller, Trisha F. Barrett, Daniel M. Murphy, Jesse D. Mccool, Anne K. Warner, Vineet B. Rajgarhia, Lee R. Lynd, David A. Hogsett, Nicky C. Caiazza

Dartmouth Scholarship

We report development of a genetic system for making targeted gene knockouts in Clostridium thermocellum, a thermophilic anaerobic bacterium that rapidly solubilizes cellulose. A toxic uracil analog, 5-fluoroorotic acid (5-FOA), was used to select for deletion of the pyrF gene. The ΔpyrF strain is a uracil auxotroph that could be restored to a prototroph via ectopic expression of pyrF from a plasmid, providing a positive genetic selection. Furthermore, 5-FOA was used to select against plasmid-expressed pyrF, creating a negative selection for plasmid loss. This technology was used to delete a gene involved in organic acid production, namely pta, which encodes …


Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold Nov 2009

Quantifying And Resolving Multiple Vector Transformants In S. Cerevisiae Plasmid Libraries, Thomas C. Scanlon, Elizabeth C. Gray, Karl E. Griswold

Dartmouth Scholarship

In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the …


Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole Jul 2006

Saccharomyces Cerevisiae-Based Molecular Tool Kit For Manipulation Of Genes From Gram-Negative Bacteria, Robert M. Q. Shanks, Nicky C. Caiazza, Shannon M. Hinsa, Christine M. Toutain, George A. O'Toole

Dartmouth Scholarship

A tool kit of vectors was designed to manipulate and express genes from a wide range of gram-negative species by using in vivo recombination. Saccharomyces cerevisiae can use its native recombination proteins to combine several amplicons in a single transformation step with high efficiency. We show that this technology is particularly useful for vector design. Shuttle, suicide, and expression vectors useful in a diverse group of bacteria are described and utilized. This report describes the use of these vectors to mutate clpX and clpP of the opportunistic pathogen Pseudomonas aeruginosa and to explore their roles in biofilm formation and surface …


Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh May 2001

Studies On The Formation Of Dna-Cationic Lipid Composite Films And Dna Hybridization In The Composites, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Krishna N. Ganesh

Faculty Works

The formation of composite films of double-stranded DNA and cationic lipid molecules (octadecylamine, ODA) and the hybridization of complementary single-stranded DNA molecules in such composite films are demonstrated. The immobilization of DNA is accomplished by simple immersion of a thermally evaporated ODA film in the DNA solution at close to physiological pH. The entrapment of the DNA molecules in the cationic lipid film is dominated by attractive electrostatic interaction between the negatively charged phosphate backbone of the DNA molecules and the protonated amine molecules in the thermally evaporated film and has been quantified using quartz crystal microgravimetry (QCM). Fluorescence studies …


Hybridization Of Dna By Sequential Immobilization Of Oligonucleotides At The Air-Water Interface, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, K. N. Ganesh Nov 2000

Hybridization Of Dna By Sequential Immobilization Of Oligonucleotides At The Air-Water Interface, Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, K. N. Ganesh

Faculty Works

The hybridization of DNA by sequential electrostatic and hydrogen-bonding immobilization of single-stranded complementary oligonucleotides at the air-water interface with cationic Langmuir monolayers is demonstrated. The complexation of the single-stranded DNA molecules with octadecylamine (ODA) Langmuir monolayers was followed in time by monitoring the pressure-area isotherms. A large (and slow) expansion of the ODA monolayer was observed during each stage of complexation in the following sequence: primary single-stranded DNA followed by complementary single-stranded DNA followed by the intercalator, ethidium bromide. Langmuir-Blodgett (LB) films of the ODA-DNA complex were formed on different substrates and characterized using quartz-crystal microgravimetry (QCM), Fourier transform infrared …