Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Characterization Of A Recently Purified Thermophilic Dnase From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin Jul 2014

Characterization Of A Recently Purified Thermophilic Dnase From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin

Kyle S Landry

A newly isolated thermophilic fungus was found to produce a partially inducible extracellular DNase. This manuscript focuses on the characterization of this novel thermophilic DNase in terms of optimal enzyme conditions, molecular weight, and certain kinetic properties. The DNase was found to be inactivated by the presence of EDTA demonstrating its dependence on metal cofactors for activity. Maximum activity occurred at pH 6.0 with no activity at pH 2.0 or 10.0. The optimal temperature for the purified DNase was 65 °C. The thermophilic DNase was found to be an exonuclease with an estimated molecular weight of 56 kDa.


Development Of A Novel Affinity Membrane Purification System For Deoxyribonuclease, Kyle Landry, Robert Levin Jan 2014

Development Of A Novel Affinity Membrane Purification System For Deoxyribonuclease, Kyle Landry, Robert Levin

Kyle S Landry

A membrane based affinity purification system was developed for the purification of the DNA specific nuclease, DNase I. Single stranded DNA was bound to unmodified polyvinylidene fluoride (PVDF) membranes which were used to purify DNase I from a solution of bovine serum albumin. Using coated membranes, a 6-fold increase in specific activity was achieved with 80 % enzyme recovery. This method provides a simple yet effective way to purify DNase I and can be very useful for the purification of other DNA specific enzymes.


Purification Of An Inducible Dnase From A Thermophilic Fungus, Kyle Landry, Andrea Vu, Robert Levin Dec 2013

Purification Of An Inducible Dnase From A Thermophilic Fungus, Kyle Landry, Andrea Vu, Robert Levin

Kyle S Landry

The ability to induce an extracellular DNase from a novel thermophilic fungus was studied and the DNAse purified using both traditional and innovative purification techniques. The isolate produced sterile hyphae under all attempted growing conditions, with an average diameter of 2 μm and was found to have an optimal temperature of 45 °C and a maximum of 65 °C. Sequencing of the internal transcribed region resulted in a 91% match with Chaetomium sp., suggesting a new species, but further clarification on this point is needed. The optimal temperature for DNase production was found to be 55 °C and was induced by the …


Purification And Characterization Of Iso-Ribonucleases From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin Dec 2013

Purification And Characterization Of Iso-Ribonucleases From A Novel Thermophilic Fungus, Kyle Landry, Robert Levin

Kyle S Landry

A thermophilic fungus previously isolated from composted horse manure was found to produce extracellular iso-RNases that were purified 127.6-fold using a combination of size exclusion chromatography and a novel affinity membrane purification system. The extent of purification was determined electrophoretically using 4%–15% gradient polyacrylamide gels. RNase activity was dependent on the presence of a metal co-factor with significantly more activity with Zn2+ or Mn2+ than Mg2+. The RNases exhibited maximum activity at both pH 3.0 and pH 7.0 with no activity at pH 2.0 or 10.0. The optimal temperature for the iso-RNase was 70 °C. The …