Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biotechnology

Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck Jan 2022

Building Tools For Improved Modulation Of The Human Gabaa Receptor, A Central Nervous System Target For The Treatment Of Anxiety, Garrett Edward Zinck

Theses and Dissertations--Pharmacy

In the U.S., anxiety is recognized as an increasing range of mentally and physically debilitating psychiatric health disorders with significant economic repercussions. Over the last 20 years, several novel anti-anxiety therapies have entered the drug development pipeline, but none have made it to market.

The work in this dissertation focused on structurally modifying valerenic acid (VA), a structurally unique carboxylated sesquiterpene acid found in Valeriana officinalis. VA is putatively reported to have allosteric modulatory activity of the human GABAA receptor, a ligand-gated ion channel responsible for attenuating neurotransmissions. Structural modeling of VA’s GABAA receptor interaction suggests that …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Nanomaterials For Double-Stranded Rna Delivery, Stuart Lichtenberg Jan 2019

Nanomaterials For Double-Stranded Rna Delivery, Stuart Lichtenberg

Theses and Dissertations--Plant and Soil Sciences

RNA interference has enormous potential as a potent, specific, and environmentally friendly alternative to small molecule pesticides for crop protection. The use of exogenous double-stranded RNA offers flexibility in targeting and use in crops in which transgenic manipulation is not an option. The combination of RNAi with nanotechnology offers further advantages that are not available with dsRNA alone. In this work, I have evaluated several different combinations of nanomaterials and polymers for use in RNAi-based pest control systems. First, I have characterized the use of chitosan/dsRNA polyplex nanoparticles for gene knockdown using the model nematode Caenorhabditis elegans. Though chitosan/dsRNA …


Fractionation And Characterization Of Lignin Streams From Unique High-Lignin Content Endocarp Feedstocks, Wenqi Li, Kirtley Amos, Mi Li, Yunqiao Pu, Seth Debolt, Arthur J. Ragauskas, Jian Shi Nov 2018

Fractionation And Characterization Of Lignin Streams From Unique High-Lignin Content Endocarp Feedstocks, Wenqi Li, Kirtley Amos, Mi Li, Yunqiao Pu, Seth Debolt, Arthur J. Ragauskas, Jian Shi

Biosystems and Agricultural Engineering Faculty Publications

Background: Lignin is a promising source of building blocks for upgrading to valuable aromatic chemicals and materials. Endocarp biomass represents a non-edible crop residue in an existing agricultural setting which cannot be used as animal feed nor soil amendment. With significantly higher lignin content and bulk energy density, endo-carps have significant advantages to be converted into both biofuel and bioproducts as compared to other biomass resources. Deep eutectic solvent (DES) is highly effective in fractionating lignin from a variety of biomass feedstocks with high yield and purity while at lower cost comparing to certain ionic liquids.

Results: In the present …


Plant And Microbial Responses To Repeated Cu(Oh)2 Nanopesticide Exposures Under Different Fertilization Levels In An Agro-Ecosystem, Marie Simonin, Benjamin P. Colman, Weiyi Tang, Jonathan D. Judy, Steven M. Anderson, Christina M. Bergemann, Jennifer D. Rocca, Jason M. Unrine, Nicolas Cassar, Emily S. Bernhardt Jul 2018

Plant And Microbial Responses To Repeated Cu(Oh)2 Nanopesticide Exposures Under Different Fertilization Levels In An Agro-Ecosystem, Marie Simonin, Benjamin P. Colman, Weiyi Tang, Jonathan D. Judy, Steven M. Anderson, Christina M. Bergemann, Jennifer D. Rocca, Jason M. Unrine, Nicolas Cassar, Emily S. Bernhardt

Plant and Soil Sciences Faculty Publications

The environmental fate and potential impacts of nanopesticides on agroecosystems under realistic agricultural conditions are poorly understood. As a result, the benefits and risks of these novel formulations compared to the conventional products are currently unclear. Here, we examined the effects of repeated realistic exposures of the Cu(OH)2 nanopesticide, Kocide 3000, on simulated agricultural pastureland in an outdoor mesocosm experiment over 1 year. The Kocide applications were performed alongside three different mineral fertilization levels (Ambient, Low, and High) to assess the environmental impacts of this nanopesticide under low-input or conventional farming scenarios. The effects of Kocide over time were …


Genetic Engineering And Sustainable Crop Disease Management: Opportunities For Case-By-Case Decision-Making, Paul Vincelli May 2016

Genetic Engineering And Sustainable Crop Disease Management: Opportunities For Case-By-Case Decision-Making, Paul Vincelli

Plant Pathology Faculty Publications

Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several …


Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke Jan 2015

Inhalable Nanocomposites And Anticancer Agents For Cancer Therapy, Nathanael A. Stocke

Theses and Dissertations--Chemical and Materials Engineering

Cancer is designated as the leading cause of mortality worldwide and lung cancer is responsible for nearly 30% of all cancer related deaths. Over the last few decades mortality rates have only marginally increased and rates of recurrence remain high. These factors, among others, suggest the need for more innovative treatment modalities in lung cancer therapy. Targeted pulmonary delivery is well established for treating pulmonary diseases such as asthma and provides a promising platform for lung cancer therapy. Increasing local deposition of anticancer agents (ACAs) and reducing systemic exposure of these toxic moieties could lead to better therapeutic outcomes and …


First Proof Of Concept Of Sustainable Metabolite Production From High Solids Fermentation Of Lignocellulosic Biomass Using A Bacterial Co-Culture And Cycling Flush System, Wanying Yao, Sue E. Nokes Dec 2014

First Proof Of Concept Of Sustainable Metabolite Production From High Solids Fermentation Of Lignocellulosic Biomass Using A Bacterial Co-Culture And Cycling Flush System, Wanying Yao, Sue E. Nokes

Biosystems and Agricultural Engineering Faculty Publications

To improve the lignocellulose conversion for ABE in high solids fermentation, this study explored the feasibility of cycling the process through the cellulolytic or/and solventogenic phases via intermittent flushing of the fermentation media. Five different flushing strategies (varying medium ingredients, inoculum supplement and cycling through phases) were investigated. Flushing regularly throughout the cellulolytic phase is necessary because re-incubation at 65 °C significantly improved glucose availability by at least 6-fold. The solvents accumulation was increased by 4-fold using corn stover (3-fold using miscanthus) over that produced by flushing only through the solventogenic phase. In addition, cycling process was simplified by re-incubating …


Influence Of Media Composition On The Growth Rate Of Chlorella Vulgaris And Scenedesmus Acutus Utilized For Co2 Mitigation, Czarena L. Crofcheck, Xinyi E, Aubrey Shea, Michael D. Montross, Mark Crocker, Rodney Andrews Jun 2013

Influence Of Media Composition On The Growth Rate Of Chlorella Vulgaris And Scenedesmus Acutus Utilized For Co2 Mitigation, Czarena L. Crofcheck, Xinyi E, Aubrey Shea, Michael D. Montross, Mark Crocker, Rodney Andrews

Biosystems and Agricultural Engineering Faculty Publications

Atmospheric carbon dioxide levels have increased since the industrial revolution due to increasing combustion of fossil fuels. One possible CO2 mitigation strategy is the use of microalgae for mitigation of CO2. This paper focuses on the influence of media composition on the growth rate of two microalgae strains, Chlorella vulgaris and Scenedesmus actus. A KNO3 based medium was found to work better for Chlorella, while a urea based equivalent worked better for Scenedesmus. The urea based media investigated here resulted in growth similar to that found with previously reported KNO3 based media. …


Metal-Resistance Genetically Engineered Bacteria, Sylvia Daunert, Donna Scott, Sridhar Ramanathan Jun 1996

Metal-Resistance Genetically Engineered Bacteria, Sylvia Daunert, Donna Scott, Sridhar Ramanathan

KWRRI Research Reports

Bacterial-based electrochemical and optical sensing systems that respond in a highly selective and sensitive manner to antimonite and arsenite have been developed. This was accomplished by using genetically engineered bacteria bearing one of two plasmids constructed for our studies. The first plasmid, pBGD23, contains the operator/promoter region (O/P) and the gene of the ArsR protein from the ars operon upstream from the β-galactosidase gene. In the absence of antimonite/arsenite, ArsR binds to the 0/P site and prevents the transcription of the genes for ArsR and β-galactosidase, thus blocking expression of these proteins. When antimonite or arsenite is present in the …