Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Biotechnology

Label-Free Microrna Optical Biosensors, Meimei Lai, Gymama Slaughter Nov 2019

Label-Free Microrna Optical Biosensors, Meimei Lai, Gymama Slaughter

Bioelectrics Publications

MicroRNAs (miRNAs) play crucial roles in regulating gene expression. Many studies show that miRNAs have been linked to almost all kinds of disease. In addition, miRNAs are well preserved in a variety of specimens, thereby making them ideal biomarkers for biosensing applications when compared to traditional protein biomarkers. Conventional biosensors for miRNA require fluorescent labeling, which is complicated, time-consuming, laborious, costly, and exhibits low sensitivity. The detection of miRNA remains a big challenge due to their intrinsic properties such as small sizes, low abundance, and high sequence similarity. A label-free biosensor can simplify the assay and enable the direct detection …


Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori Jan 2019

Mechanisms And Immunogenicity Of Nspef-Induced Cell Death In B16f10 Melanoma Tumors, Alessandra Rossi, Olga N. Pakhomova, Andrei G. Pakhomov, Samantha Weygandt, Anna A. Bulysheva, Len E. Murray, Peter A. Mollica, Claudia Muratori

Bioelectrics Publications

Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20-200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such …


Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller Sep 2018

Moderate Heat Application Enhances The Efficacy Of Nanosecond Pulse Stimulation For The Treatment Of Squamous Cell Carcinoma, Chelsea M. Edelblute, Sigi Guo, Embo Yang, Chunqi Jiang, Karl Schoenbach, Richard Heller

Bioelectrics Publications

Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43°C was 3 times …


Mechanism Of Virus Inactivation By Cold Atmospheric-Pressure Plasma And Plasma-Activated Water, Li Guo, Ruobing Xu, Lu Gou, Zhichao Liu, Yiming Zhao, Dingxin Liu, Lei Zhang, Hailan Chen, Michael G. Kong Jun 2018

Mechanism Of Virus Inactivation By Cold Atmospheric-Pressure Plasma And Plasma-Activated Water, Li Guo, Ruobing Xu, Lu Gou, Zhichao Liu, Yiming Zhao, Dingxin Liu, Lei Zhang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

ABSTRACT Viruses cause serious pathogenic contamination that severely affects the environment and human health. Cold atmospheric-pressure plasma efficiently inactivates pathogenic bacteria; however, the mechanism of virus inactivation by plasma is not fully understood. In this study, surface plasma in argon mixed with 1% air and plasma-activated water was used to treat water containing bacteriophages. Both agents efficiently inactivated bacteriophages T4, ϕ174, and MS2 in a time-dependent manner. Prolonged storage had marginal effects on the antiviral activity of plasma-activated water. DNA and protein analysis revealed that the reactive species generated by plasma damaged both nucleic acids and proteins, consistent with the …


Upregulation Of Dna Sensors In B16.F10 Melanoma Spheroid Cells After Electrotransfer Of Pdna, Katarina Znidar, Masa Bosnjak, Tanja Jesenko, Loree C. Heller, Maja Cemazar Jan 2018

Upregulation Of Dna Sensors In B16.F10 Melanoma Spheroid Cells After Electrotransfer Of Pdna, Katarina Znidar, Masa Bosnjak, Tanja Jesenko, Loree C. Heller, Maja Cemazar

Bioelectrics Publications

Increased expression of cytosolic DNA sensors, a category of pattern recognition receptor, after control plasmid DNA electrotransfer was observed in our previous studies on B16.F10 murine melanoma cells. This expression was correlated with the upregulation of proinflammatory cytokines and chemokines and was associated with cell death. Here, we expanded our research to include the influence of features of cells in a 3-dimensional environment, which better represents the tumors’ organization in vivo. Our results show that lower number of cells were transfected in spheroids compared to 2-dimensional cultures, that growth was delayed after electroporation alone or after electrotransfer of plasmid …


Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit Jan 2018

Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit

Bioelectrics Publications

Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1 kHz and 20 MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner …


Electrotransfer Of Different Control Plasmids Elicits Different Antitumor Effectiveness In B16.F10 Melanoma, Masa Bosnjak, Tanjo Jesenko, Urska Kamensek, Gregor Sersa, Jaka Lavrencak, Loree Heller, Maja Cemazar Jan 2018

Electrotransfer Of Different Control Plasmids Elicits Different Antitumor Effectiveness In B16.F10 Melanoma, Masa Bosnjak, Tanjo Jesenko, Urska Kamensek, Gregor Sersa, Jaka Lavrencak, Loree Heller, Maja Cemazar

Bioelectrics Publications

Several studies have shown that different control plasmids may cause antitumor action in different murine tumor models after gene electrotransfer (GET). Due to the differences in GET protocols, plasmid vectors, and experimental models, the observed antitumor effects were incomparable. Therefore, the current study was conducted comparing antitumor effectiveness of three different control plasmids using the same GET parameters. We followed cytotoxicity in vitro and the antitumor effect in vivo after GET of control plasmids pControl, pENTR/U6 scr and pVAX1 in B16.F10 murine melanoma cells and tumors. Types of cell death and upregulation of selected cytosolic DNA sensors and cytokines were …


Nano-Pulse Stimulation For The Treatment Of Pancreatic Cancer And The Changes In Immune Profile, Sigi Guo, Niculina I. Burcus, James Hornef, Yu Jing, Chunqi Jiang, Richard Heller, Stephen J. Beebe Jan 2018

Nano-Pulse Stimulation For The Treatment Of Pancreatic Cancer And The Changes In Immune Profile, Sigi Guo, Niculina I. Burcus, James Hornef, Yu Jing, Chunqi Jiang, Richard Heller, Stephen J. Beebe

Bioelectrics Publications

A Pancreatic cancer is a notorious malignant neoplasm with an extremely poor prognosis. Current standard of care is rarely effective against late-stage pancreatic cancer. In this study, we assessed nanopulse stimulation (NPS) as a local treatment for pancreatic cancer in a syngeneic mouse Pan02 pancreatic cancer model and characterized corresponding changes in the immune profile. A single NPS treatment either achieved complete tumor regression or prolonged overall survival in animals with partial tumor regression. While this is very encouraging, we also explored if this local ablation effect could also result in immune stimulation, as was observed when NPS led to …


Excitation And Injury Of Adult Ventricular Cardiomyocytes By Nano- To Millisecond Electric Shocks, Iurii Semenov, Sergey Grigoryev, Johanna U. Neuber, Christian W. Zemlin, Olga N. Pakhomova, Maura Casciola, Andrei G. Pakhomov Jan 2018

Excitation And Injury Of Adult Ventricular Cardiomyocytes By Nano- To Millisecond Electric Shocks, Iurii Semenov, Sergey Grigoryev, Johanna U. Neuber, Christian W. Zemlin, Olga N. Pakhomova, Maura Casciola, Andrei G. Pakhomov

Bioelectrics Publications

Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down to 200 ns, and compared electroporative damage by proportionally more intense shocks of different duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM) were loaded with a Ca2+ indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude until a Ca2+ transient was optically detected. Then, the voltage was increased 5-fold, and the electric cell injury was quantified by the uptake of a membrane permeability marker dye, propidium …


Delayed Hypersensitivity To Nanosecond Pulsed Electric Field In Electroporated Cells, Sarah D. Jensen, Vera A. Khorokhorina, Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova Sep 2017

Delayed Hypersensitivity To Nanosecond Pulsed Electric Field In Electroporated Cells, Sarah D. Jensen, Vera A. Khorokhorina, Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

We demonstrate that conditioning of mammalian cells by electroporation with nanosecond pulsed electric field (nsPEF) facilitates their response to the next nsPEF treatment. The experiments were designed to unambiguously separate the electroporation-induced sensitization and desensitization effects. Electroporation was achieved by bursts of 300-ns, 9 kV/cm pulses (50 Hz, n = 3–100) and quantified by propidium dye uptake within 11 min after the nsPEF exposure. We observed either sensitization to nsPEF or no change (when the conditioning was either too weak or too intense, or when the wait time after conditioning was too short). Within studied limits, conditioning never caused desensitization. …


Damage-Free Peripheral Nerve Stimulation By 12-Ns Pulsed Electric Field, Maura Casciola, Shu Xiao, Andrei G. Pakhomov Sep 2017

Damage-Free Peripheral Nerve Stimulation By 12-Ns Pulsed Electric Field, Maura Casciola, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Modern technologies enable deep tissue focusing of nanosecond pulsed electric field (nsPEF) for non-invasive nerve and muscle stimulation. However, it is not known if PEF orders of magnitude shorter than the activation time of voltage-gated sodium channels (VGSC) would evoke action potentials (APs). One plausible scenario requires the loss of membrane integrity (electroporation) and resulting depolarization as an intermediate step. We report, for the first time, that the excitation of a peripheral nerve can be accomplished by 12-ns PEF without electroporation. 12-ns stimuli at 4.1-11 kV (3.3-8.8 kV/cm) evoked APs similarly to conventional stimuli (100-250 mus, 1-5 V, 103-515 V/m), …


Controllable Moderate Heating Enhances The Therapeutic Efficacy Of Irreversible Electroporation For Pancreatic Cancer, Chelsea M. Edelblute, James Hornef, Niculina I. Burcus, Thomas Norman, Stephen J. Beebe, Karl Schoenbach, Richard Heller, Chunqi Jiang, Sigi Guo Sep 2017

Controllable Moderate Heating Enhances The Therapeutic Efficacy Of Irreversible Electroporation For Pancreatic Cancer, Chelsea M. Edelblute, James Hornef, Niculina I. Burcus, Thomas Norman, Stephen J. Beebe, Karl Schoenbach, Richard Heller, Chunqi Jiang, Sigi Guo

Bioelectrics Publications

Irreversible electroporation (IRE) as a non-thermal tumor ablation technology has been studied for the treatment of pancreatic carcinoma and has shown a significant survival benefit. We discovered that moderate heating (MH) at 43°C for 1-2 minutes significantly enhanced ex vivo IRE tumor ablation of Pan02 cells by 5.67-fold at 750 V/cm and by 1.67-fold at 1500 V/cm. This amount of heating alone did not cause cell death. An integrated IRE system with controllable laser heating and tumor impedance monitoring was developed to treat mouse ectopic pancreatic cancer. With this novel IRE system, we were able to heat and maintain the …


Electrotransfer Of Plasmid Dna Radiosensitizes B16f10 Tumors Through Activation Of Immune Response, Monika Savarin, Urska Kamensek, Maja Cemazar, Richard Heller, Gregor Sersa Jan 2017

Electrotransfer Of Plasmid Dna Radiosensitizes B16f10 Tumors Through Activation Of Immune Response, Monika Savarin, Urska Kamensek, Maja Cemazar, Richard Heller, Gregor Sersa

Bioelectrics Publications

Background. Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors.

Materials and methods. The murine melanoma Bl6F10 tumors, growing on the back of C57BI/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, …


Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian Jan 2017

Nanosecond Pulsed Electric Field Induced Changes In Cell Surface Charge Density, Diganta Dutta, Xavier-Lewis Palmer, Anthony Asmar, Michael Stacey, Shizhi Qian

Bioelectrics Publications

This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01 M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to …


Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar Dec 2013

Electrotransfer Of Single-Stranded Or Double-Stranded Dna Induces Complete Regression Of Palpable B16.F10 Mouse Melanomas, Loree Heller, Vesba Todorovic, Maja Cemazar

Bioelectrics Publications

Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both …


Response To "Sodium Current Inhibition By Nanosecond Pulsed Electric Field (Nspef) - Fact Or Artifact?" By Verkerk Et Al, Andrei G. Pakhomov Jan 2013

Response To "Sodium Current Inhibition By Nanosecond Pulsed Electric Field (Nspef) - Fact Or Artifact?" By Verkerk Et Al, Andrei G. Pakhomov

Bioelectrics Publications

It was nice to learn that our studies of nanosecond pulsed electric field (nsPEF) effects on membrane currents [Nesin et al., 2012; Nesin and Pakhomov, 2012] gained the attention of scientists outside the immediate field of bioelectromagnetics.


Inactivation Of Bacterial Opportunistic Skin Pathogens By Nonthermal Dc-Operated Afterglow Atmospheric Plasma, L. C. Heller, C. M. Edelblute, A. M. Mattson, X. Hao, J. F. Kolb Nov 2012

Inactivation Of Bacterial Opportunistic Skin Pathogens By Nonthermal Dc-Operated Afterglow Atmospheric Plasma, L. C. Heller, C. M. Edelblute, A. M. Mattson, X. Hao, J. F. Kolb

Bioelectrics Publications

AIMS: Multidrug-resistant opportunistic pathogens are clinically significant and require the development of new antimicrobial methods. In this study, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus cells were exposed to atmospheric plasma on agar plates and in vitro on porcine skin for the purpose of testing bacterial inactivation.

METHODS AND RESULTS: Microbial inactivation at varying exposure durations was tested using a nonthermal plasma jet generated with a DC voltage from ambient air. The observed reduction in colony forming units was quantified as log10 reductions.

CONCLUSIONS: Direct plasma exposure significantly inactivated seeded bacterial cells by approx. 6 log10 …


Evaluation Of Delivery Conditions For Cutaneous Plasmid Electrotransfer Using A Multielectrode Array, Bernadette Ferraro, Loree C. Heller, Yolmari L. Cruz, Siqi Guo, Amy Donate, Richard Heller May 2011

Evaluation Of Delivery Conditions For Cutaneous Plasmid Electrotransfer Using A Multielectrode Array, Bernadette Ferraro, Loree C. Heller, Yolmari L. Cruz, Siqi Guo, Amy Donate, Richard Heller

Bioelectrics Publications

Electroporation (EP) is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues. Delivery of plasmid DNA by EP to a large surface area is not practical because the distance between the electrode pairs, and therefore the applied voltage, must be increased to effectively permeabilize the cell membrane. The design of the multielectrode array (MEA) incorporates multiple electrode pairs at a fixed distance to allow for delivery of plasmid DNA to the skin, potentially reducing the sensation associated with in vivo EP. In this report, we evaluate the effects of field …


Electro-Gene Transfer To Skin Using A Noninvasive Multielectrode Array, Siqi Guo, Amy Donate, Gaurav Basu, Cathryn Lundberg, Loree Heller, Richard Heller Jan 2011

Electro-Gene Transfer To Skin Using A Noninvasive Multielectrode Array, Siqi Guo, Amy Donate, Gaurav Basu, Cathryn Lundberg, Loree Heller, Richard Heller

Bioelectrics Publications

Because of its large surface area and easy access for both delivery and monitoring, the skin is an attractive target for gene therapy for cutaneous diseases, vaccinations and several metabolic disorders. The critical factors for DNA delivery to the skin by electroporation (EP) are effective expression levels and minimal or no tissue damage. Here, we evaluated the non-invasive multielectrode array (MEA) for gene electrotransfer. For these studies we utilized a guinea pig model, which has been shown to have a similar thickness and structure to human skin. Our results demonstrate significantly increased gene expression 2 to 3 logs above injection …


Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski Mar 2010

Electrically Mediated Delivery Of Plasmid Dna To The Skin, Using A Multielectrode Array, Richard Heller, Yolmari Criz, Loree C. Heller, Richard A. Gilbert, Mark J. Jaroszeski

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take full advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is a strong candidate to meet this delivery criterion. Electroporation of the skin is a simple, direct, in vivo method to deliver genes for therapy. Previously, delivery to the skin was performed by means of applicators with relatively large distances between electrodes, resulting in significant muscle stimulation and pain. These applicators also had limitations in controlling the directionality of the applied field. …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …


A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach Jan 2009

A New Pulsed Electric Field Therapy For Melanoma Disrupts The Tumor's Blood Supply And Causes Complete Remission Without Recurrence, Richard Nuccitelli, Xinhua Chen, Andrei G. Pakhomov, Wallace H. Baldwin, Saleh Sheikh, Jennifer L. Pomicter, Wei Ren, Chris Osgood, R. James Swanson, Juergen F. Kolb, Stephen J. Beebe, Karl H. Schoenbach

Bioelectrics Publications

We have discovered a new, ultrafast therapy for treating skin cancer that is extremely effective with a total electric field exposure time of only 180 mu sec. The application of 300 high-voltage (40 kV/cm), ultrashort (300 nsec) electrical pulses to murine melanomas in vivo triggers both necrosis and apoptosis, resulting in complete tumor remission within an average of 47 days in the 17 animals treated. None of these melanomas recurred during a 4-month period after the initial melanoma had disappeared. These pulses generate small, long-lasting, rectifying nanopores in the plasma membrane of exposed cells, resulting in increased membrane permeability to …


Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller Dec 2008

Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller

Bioelectrics Publications

BACKGROUND: Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery.

METHODS: Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model.

RESULTS: Experiments …


Plasma Membrane Voltage Changes During Nanosecond Pulsed Electric Field Exposure, W. Frey, R. O. Price, P. F. Blackmore, R. P. Joshi, R. Nuccitelli, S. J. Beebe, K. H. Schoenbach, J. F. Kolb Jan 2006

Plasma Membrane Voltage Changes During Nanosecond Pulsed Electric Field Exposure, W. Frey, R. O. Price, P. F. Blackmore, R. P. Joshi, R. Nuccitelli, S. J. Beebe, K. H. Schoenbach, J. F. Kolb

Bioelectrics Publications

The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of similar to 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat …


Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach Jan 2005

Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach

Bioelectrics Publications

Electric pulses across intact vesicles and cells can lead to transient increase in permeability of their membranes. We studied the integrity of these membranes in response to external electric pulses of high amplitude and submicrosecond duration with a primary aim of achieving selective permeabilization. These effects were examined in two separate model systems comprising of 1), a mixed population of 1,2-di-oleoyl-sn-glycero-3-phosphocholine phospholipid vesicles and in 2), single COS-7 cells, in which large endosomal membrane vacuoles were induced by stimulated endocytosis. It has been shown that large and rapidly varying external electric fields, with pulses shorter than the charging time of …


The Effects Of Intense Submicrosecond Electrical Pulses On Cells, Jingdong Deng, Karl H. Schoenbach, E. Stephen Buescher, Pamela S. Hair, Paula M. Fox, Stephen J. Beebe Apr 2003

The Effects Of Intense Submicrosecond Electrical Pulses On Cells, Jingdong Deng, Karl H. Schoenbach, E. Stephen Buescher, Pamela S. Hair, Paula M. Fox, Stephen J. Beebe

Bioelectrics Publications

A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the submicrosecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 μs– 60 ns, electric field intensities 3–150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the cause of …