Open Access. Powered by Scholars. Published by Universities.®

Biotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biotechnology

Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun Jan 2022

Mechanism Of Antibiotic Permeability Through The Gram-Negative Bacterial Envelope, Olaniyi Alegun

Theses and Dissertations--Chemistry

The outer membrane of Gram-negative bacteria (GN) makes them distinct among superbugs that are associated with the development of antibiotic resistance. The outer membrane, and inner membrane, separated by the periplasm, form a double-membrane barrier to the entry of antibiotics into the cell. Several studies have been conducted to examine the role of outer membrane modifications such as porins, lipopolysaccharides, and efflux pumps on antibiotic resistance. However, there is a paucity of knowledge on how antibiotics behave in the periplasm, to gain access into their target region. My thesis focuses on understanding the mechanism of antibiotic permeability through the cellular …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


Rna Nanotechnology For Next Generation Targeted Drug Delivery, Fengmei Pi Jan 2016

Rna Nanotechnology For Next Generation Targeted Drug Delivery, Fengmei Pi

Theses and Dissertations--Pharmacy

The emerging field of RNA nanotechnology is developing into a promising platform for therapeutically application. Utilizing the state-of-art RNA nanotechnology, RNA nanoparticles can be designed and constructed with controllable shape, size for both RNA therapeutics and chemical drug delivery. The high homogeneity in particle size and ease for RNA therapeutic module conjugation, made it feasible to explore versatile RNA nanoparticle designs for preclinical studies.

One vital module for therapeutic RNA nanoparticle design is RNA aptamer, which can enable the RNA nanoparticles find its specific target for targeted drug delivery. A system of screening divalent RNA aptamers for cancer cell targeting …


Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown Jan 2015

Target-Directed Biosynthetic Evolution: Redirecting Plant Evolution To Genomically Optimize A Plant’S Pharmacological Profile, Dustin Paul Brown

Theses and Dissertations--Neuroscience

The dissertation describes a novel method for plant drug discovery based on mutation and selection of plant cells. Despite the industry focus on chemical synthesis, plants remain a source of potent and complex bioactive metabolites. Many of these have evolved as defensive compounds targeted on key proteins in the CNS of herbivorous insects, for example the insect dopamine transporter (DAT). Because of homology with the human DAT protein some of these metabolites have high abuse potential, but others may be valuable in treating drug dependence. This dissertation redirects the evolution of a native Lobelia species toward metabolites with greater activity …